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Chapter 1

Introduction

1.1 Learning word pronunciation

Learning to pronounce written words means learning the intricate relations
between a language’s writing system and its speech sounds. When children
learn to read and write in primary school they face such a learning task,
as do students when mastering the writing system, the speech sounds, and
the vocabulary of a language different from their mother tongue. Learning
to pronounce words can also be modelled on computers. The latter, rather
than simulating learning to pronounce written words in humans, is the topic
of the present study. In contrast with humans, machines can be modelled
(i.e., realised, set up) in such specific ways that the pronunciation of written
words is modelled on these machines. For instance, a machine can be set
up to accommodate a data base of representations of word-pronunciation
knowledge, without having learned any of those representations by itself: it
is hardwired in memory by the system’s designer. In fact, the hardwiring of
word-pronunciation knowledge is common practice in the development of
speech synthesizers (Allen, Hunnicutt, and Klatt 1987; Daelemans 1987).

A major part of language-engineering work on word-pronunciation appli-
cations has been based on mainstream linguistic theories which consider only
the modelling of word-pronunciation knowledge to be of scientific interest.
The American linguist Noam Chomsky can be seen as the principal promoter
of this tradition. His work on syntax (Chomsky, 1957), and later work on
phonology (Chomsky and Halle, 1968) has influenced linguistics deeply and
across the board from the 1950s onwards (Chomsky, 1957; Piatelli–Palmarini,
1980).

1



2 CHAPTER 1. INTRODUCTION

Despite the influential arguments of Chomskyan linguistics against the
existence of a generic learning method capable of language learning, the
possibility of the existence of such a method has been conjectured and inves-
tigated within the area of linguistic structuralism (Robins, 1997). The field of
linguistic structuralism has appeared and reappeared under the names of de-
scriptive, quantitative, statistical, or corpus-based linguistics from the 1930s
onwards (Robins, 1997).

Thus, two contrasting views exist on the learnability of word pronuncia-
tions by a generic learning method: the Chomskyan view on the one hand,
and the linguistic-structuralist view on the other hand. To gain a better under-
standing of the gap between the two views to language learning, Section 1.2
introduces inductive language learning as our interpretation of the linguistic-
structuralist view, and sketches the historical line of research in linguistics
both in favour of and against a generic method for language learning.

1.2 Inductive language learning

We put forward inductive language learning as a generic method for language
learning to be employed in our study. The fundamental idea behind inductive
language learning is that a major part of language can be modelled by the
analogy principle (De Saussure, 1916; Glushko, 1979; Yvon, 1996; Lepage and
Shin-ichi, 1996; Daelemans, 1996b) stating that similarities between sequences
of one or more symbols of language tend to hold for corresponding sequences of
symbols at different levels of language. A level is a representation domain, in
which language is represented as variable-length sequences of symbols. For
example, on the level of writing, the letters of the alphabet constitute the
symbols, and words or sentences are represented as sequences of letters. On
the phonemic speech level, the different phonemes of the language are the
symbols, and words or utterances are represented as sequences of phonemes.
We will return to describing the different levels discerned generally in word
pronunciation in Chapter 2; cf. Figure 2.10 for an illustration.

The analogy principle integrates two types of relations between sequences
of one or more language symbols: (i) similarities between sequences of lan-
guage symbols at the same level, and (ii) correspondences of sequences of
symbols at one level with sequences of symbols at another level. To de-
fine similarity and correspondence, we provide simple examples from the
domain which is the object of our study, English word pronunciation. We
start by identifying two levels: writing and speech. In alphabetic (or logo-
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graphic, Coulmas, 1989) writing systems, such as that of English, words are
represented on the level of writing by sequences of letters which make up
the word’s spelling: for example, the words bed and bid are each composed
of a sequence of three letters. On the level of speech, words are represented
by sequences of speech sounds which make up the word’s pronunciation: for
example, the words bed and bid are represented on the level of speech as the
three-phoneme sequences /b� d/ and /bıd/, respectively. Similarities exist
between the spellings bed and bid; restricting ourselves in this example to
matching letters at identical word positions, bed and bid are similar in that
they share two letters: a word-initial b and a word-final d. The pronuncia-
tions, or phonemic transcriptions /b� d/ and /bıd/ share two phonemes (the
commonly-accepted symbols used to denote speech sounds): a word-initial
phoneme /b/ and a word-final phoneme /d/.

Correspondences exist between bed and its phonemic transcription
/b� d/, and between bid and its phonemic transcription /bıd/. Correspon-
dences express the relations between written words and their pronunciations,
and are given by the (potentially arbitrary) pronunciation employed by lan-
guage users and stored in pronunciation lexicons.

Thus, the similarly-spelled words bed and bid have the similar corre-
sponding pronunciations /b� d/ and /bıd/, respectively. Consider, for ex-
ample, also the pairs book and books, and their pronunciations /buk/ and
/buks/; believe and relieve, and their pronunciations /b � liv/ and /r � liv/;
analytically and anarchistically and their pronunciations /æn � lıtık � lı/ and
/æn � kıstık � lı/. In all examples, identical letter groups within pairs of words
are mirrored by identical phoneme groups in the corresponding pronuncia-
tions. Matching identical letters or phonemes at identical positions is a con-
cededly simplistic definition of similarity; consider, for example, the words
pair bid and abide, or buck and buy. English word pronunciation is infested
with these types of inconsistencies; dealing with them in inductive language
learning means that the similarity function should be able to exploit contex-
tual information, even if this means including the whole word in the context.
While the bed/bid example used here refers to similarity as counting single
letters at identical word positions, computing similarity should be essen-
tially unbiased towards the number of letters and phonemes between which
correspondences may be learned. We will return to the issue of computing
similarities between (parts of) words in Chapter 2.

Figure 1.1 visualises the similarity and correspondence relations as as-
sumed by the analogy principle for the general case of word pronunciation.
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C

written-word level

S

/B/

A B

/A/pronunciation level

C

S’

Figure 1.1: Visualisation of the analogy principle in word pronunciation.
Word A is as similar to word B as the pronunciation of A, /A/,
is to the pronunciation of B, /B/. Correspondence relations are
denoted by C; S and S’ denote the similarity relations existing
between words and between pronunciations, respectively.

Given a word A and its corresponding pronunciation /A/, and a word B and
its corresponding pronunciation /B/, if A and B stand in a similarity relation,
then /A/ and /B/ stand in a similarity relation.

In any alphabetic languages, the similarity relations among words (in-
dicated by

�
in Figure 1.1) and among pronunciations (indicated by

���
in

Figure 1.1) often do not yield the same quantifications of similarity. For the
example word-pronunciation pairs bed – /b� d/ and bid – /bıd/, both

�
and� �

yield similarities of two matching elements at identical word positions, but
other examples of word pairs (e.g., though – / � ��� / and through – / � ru /,
hear – /hı � / and heart – /h �	� t/) readily show that

�
may yield a higher simi-

larity between spelling strings than the similarity between the corresponding
pronunciations yielded by

�
�
. The opposite also occurs in English, e.g., little

and victual have a rather different spelling, but their corresponding pronun-
ciations are highly similar: /lıt � l / and /vıt � l /, respectively. This lack of
complete equivalence of

�
and

� �
is due to the fact that letters in alphabetic

writing systems essentially originate from denoting speech sounds in a one-
to-one manner, but have shifted gradually or arbitrarily towards many-to-one,
one-to-many, and many-to-many relations (Röhr, 1994). Yet, the original one-
to-one relations still shine through; they do occur often and allow the analogy
principle to be readily applicable for a considerable number of cases. Thus,
for languages with alphabetic writing systems, we assume that

�
�����
, where

‘
�

’ is used rather than ‘ � ’ to denotes the distortion of the original one-to-



1.2 INDUCTIVE LANGUAGE LEARNING 5

one mappings between spelling and speech. It follows that for pictographic
and ideographic writing systems, such as that of Chinese,

���� � �
: in these

writing systems, similarities between written words do not hold between the
pronunciations of those words.

While the analogy principle describes a static phenomenon, it can
be employed actively in pronouncing words. The problem for a word-
pronunciation system is that it cannot simply reproduce some known word
pronunciation when presented with a word never seen before; it is essential
for the system to be able to produce a best guess for the new word’s pro-
nunciation. It would be advantageous to be able to extract knowledge from
the word-pronunciation correspondences encountered earlier and stored in
memory. To this end inductive language learning � can be employed. Inductive
language learning is the combination of the analogy principle with the gen-
eral reasoning method induction. A generic definition of induction adopted
here is a method of reasoning on the basis of known facts to produce general rules
or principles. Flach (1995) remarks in the introductory chapter of his thesis
that while the above-mentioned definition appears to work, there is no well-
established definition of induction. Cf. Flach (1995) and Harnad (1982) for
further discussions on the definition of induction from a logical and cognitive
perspective, respectively.

Figure 1.2 illustrates the process of inductive language learning specific
for the word-pronunciation task, in its most basic and general form. It is an
adaptation of Figure 1.1, in which the pronunciation of word B is assumed
unknown (denoted by the question mark). For example, supposing that
A is bed, and that B is bid, the analogy principle states that the unknown
pronunciation of bid is as similar to /b� d/ as bid is to bed. The two words are
indeed similar, since they share the first and last letters. As said, sharing letters
at identical word positions is a weak measure of similarity, but it suffices in
this example.

Induction is reasoning on the basis of known facts to produce general
rules or principles. The first fact that comes to mind is that A corresponds to
/A/, but that is of no use in finding the unknown pronunciation of B since
B is not equal to A. Since the analogy principle assumes correspondences
between sequences of letters and phonemes, facts should be sought at the
level of letters and phonemes; for example, that b corresponds with /b/, that

�
Daelemans (1995) uses the alternative summarising term similarity-based learning of language

tasks. Similarity-based learning is often used as a synonym for inductive learning (Shavlik and
Dietterich, 1990, p. 1).
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C

written-word level

S
A B

/A/pronunciation level
S’

?

Figure 1.2: Visualisation of the analogy principle used in combination with
induction. The unknown pronunciation of B is induced from
that of A insofar as A is similar to B.

e corresponds with /� /, and that d corresponds with /d/. These facts can be
established automatically from known correspondences, e.g., in this example,
by assuming letters and phonemes at identical positions to be corresponding.
Establishing these facts and storing them in memory (be it long-term memory
or working memory) for later use is done in two steps.

The first step in inductive learning. This first step may occur in a separate
first phase in which all correspondences between letters and phonemes are
established on the basis of known word-pronunciation correspondences, after
which this stored knowledge can be used to process new words, while it can
also occur on demand: establishing letter-phoneme correspondences on the
basis of known word-pronunciation correspondences only when they are
needed, for example, when processing an unknown word.

The second step of inductive learning is the induction of pronunciations
given some new input, on the basis of information searched in the first step.
Having stored in the first step that b corresponds with /b/, and d with /d/,
it can be induced from these facts that the pronunciation of bid starts with
/b/ and ends with /d/. To induce the phonemic correspondence of the
middle letter i, it is necessary to have another correspondence in memory,
of a word D (e.g., lid) and its corresponding pronunciation (/lıd/) with a
middle i. This would be a minimal solution; another would be to match a new
word with an unknown pronunciation against all known word-pronunciation
correspondences ever encountered and stored in memory.

To summarise, inductive learning of word pronunciation is learning corre-
spondences from known word-pronunciation pairs, and inducing from these
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facts letter-phoneme correspondences for determining the pronunciations of
new words, insofar as these new words are similar to known words. We
have illustrated that the analogy principle can be combined with induction in
inductive language learning.

The analogy principle as well as the use of induction in language are
fundamental ideas that have been expressed in many different guises by
influential linguists throughout the past century. We discuss landmarks in
this tradition, as well as criticisms against it. On the basis of the linguistic
debate, an updated, desired characterisation of inductive language learning
is formulated.

Inductive language learning: landmarks

Until the 1960s, the most common opinion within linguistic research on lan-
guage was that it was one of the once-mysterious human abilities that could
be satisfactorily explained by generic learning methods. To provide a back-
ground for our problem statement, we highlight four linguists who, in differ-
ent periods of the past century, have made explicit statements in favour of and
against generic methods for language learning and processing: Ferdinand de
Saussure, Leonard Bloomfield, Noam Chomsky, and Royal Skousen.

De Saussure: segmentation, classification, and analogy

In his book Cours de linguistique générale � , the Swiss linguist Ferdinand de
Saussure (1916) put forward the theory that linguistics (the study of language)
naturally divides into a linguistics of la langue, viz. the language as a social
medium, independent of the individual, and a linguistics of la parole, the
individual’s language. De Saussure (1916) argues that while la parole governs
the way that individuals (learn to) generate and interpret speech, la langue
represents the common, general knowledge of all individuals about the signs
of the language, i.e., the common symbols of speech and writing used within
a language community, and the relations existing between these signs.

Two relations exist between signs: (i) syntagmatic relations between signs
at the same level; e.g., between letters in a word; (ii) paradigmatic (also referred
to as associative) relations between signs at different levels, e.g., between let-
ters and phonemes (De Saussure, 1916). Chomsky (Piatelli–Palmarini, 1980)

�
The book was edited and published in 1916 after De Saussure’s death in 1913 by his pupils

C. Bally and A. Riedlinger, on the basis of (mostly handwritten) course notes by De Saussure
(Harris, 1987).
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points out that this dichotomy corresponds to two processes, viz. segmentation
for determining the neighbourhood relations of (sequences of) linguistic sym-
bols at the same level, and classification for determining the correspondences
between (sequences of) linguistic symbols at different levels.

While syntagmatic and paradigmatic relations exist on the level of la
langue, it is up to the individual’s parole to learn both types of relations, e.g.,
to learn syntagmatic relations between letters, and to learn paradigmatic re-
lations (correspondences) between words and pronunciations (De Saussure,
1916). For learning the relations, De Saussure (1916) argues, analogy is needed
as the basic function. Our use of analogy in inductive language learning is in
essence based on the Saussurian use of analogy.

Bloomfield: induction

While the role of analogy in language learning was expressed by De Saus-
sure, the role of induction as the driving force behind discovering princi-
ples and regularities in language was advocated by the American linguist
Leonard Bloomfield, who once stated “The only useful generalizations about
language are inductive generalizations.” (Bloomfield, 1933, p. 20). Bloom-
field is renown foremost for his work on the development of standardisation
methods for analysing (new) languages, and for being the founder of Ameri-
can structuralism (Robins, 1997). Bloomfield proclaimed radical ideas on the
nature of language, which in his view was basically behaviourist (Gardner,
1987), i.e., emerging from learned responses to stimuli. Bloomfield argued
that language is limited to what the speaker/hearer knows, through induc-
tion, about the relations between speech and writing symbols. Meaning,
however strongly related to language, cannot be learned by straightforward
induction, as it is much more complex than speech and writing; consequently,
as Bloomfield (1933) argued, the study of meaning is not a part of linguistics.

Bloomfield’s ideas, and those of behaviourist psychologists such as Skin-
ner, dominated linguistics until the 1950s, when the American linguist Noam
Chomsky launched a major attack against the Saussure–Bloomfield line of
thinking about language.

Chomsky: abstraction levels, rules, principles and parameters

In Chomsky’s view, it is a mistake to see language as a limited system of
relations between relatively small sequences of linguistic symbols (words,
pronunciations, letters, and phonemes, possibly some patterns of frequently
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co-occurring words), of which the relations can be learned by induction
(Chomsky, 1975). Language, Chomsky argued, not only incorporates speech,
writing, and some superficial syntax, but incorporates meaning as well. He
proposed a mathematical-logical formalisation of the relations between the
surface structure of language (i.e., the way it appears in speech and writing),
and the logical form of the meanings underlying utterances and sentences
(Chomsky, 1957). Not being able in general to couple speech and writing
to meaning directly, Chomsky originally introduced an intermediary level of
deep structure between the levels of utterances and meaning. Utterances are
converted into meaning and vice versa via deep structure and sets of genera-
tive and transformational grammar rules (Chomsky, 1957, 1965). Chomsky’s
recent work has reduced the concepts of deep structures and transformational
and generative rules back to the framework of the minimalist program (Chom-
sky, 1995). The minimalist program aims to describe language by a system
of principles and parameters, which is universal for all languages. The pa-
rameters, which are language specific, constitute the part of the language
system that has to be learned. Once parameter values have been learned,
the principle-part of the language system can couple articulatory language
(speech) to concepts (meaning) via two interface levels: phonetic form and
logical form (Chomsky, 1995). The mechanisms for deriving meaning from
speech, and vice versa, via the interface levels, are kept as economical as
possible.

Language learning is regarded by Chomsky as a specific, fast-paced dis-
covery of parameters which determine the principles appropriate for the lan-
guage being learned. Discovering the appropriate parameter settings cannot
be driven by a generic learning process:

“ � � � I don’t see any way of explaining the resulting final state
[of language learning] in terms of any proposed general devel-
opmental mechanism that has been suggested by artificial intelli-
gence, sensorimotor mechanisms, or anything else” (Chomsky, in
Piatelli–Palmarini, 1980, p. 100).

Chomsky’s ideas on generative and transformational grammars on the
level of syntactic structures and logical form are not the focus of this thesis
– we do not include aspects of meaning in our investigation of the word-
pronunciation task, and we do not aim at falsifying Chomsky’s claim ex-
pressed in the quote above. However, the ideas of Chomsky on generative
and transformational grammars form a relevant background for our problem
statement, since they have been transferred to linguistic phenomena at the
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word level as well, in the fields of generative phonology and morphology, the
linguistic domains in which word-level processes such as word pronunciation
are investigated. The book The Sound Pattern of English (Chomsky and Halle,
1968), generally referred to as SPE, spawned a large amount of work on the
discovery of generative and transformational models for isolated domains
such as syllabic structure and stress patterns (Kenstowicz, 1993), and mor-
phological structure (Sproat, 1992). The isolated investigation of the domains
caused a change in how conversion processes such as word pronunciation
were viewed, from a direct mapping from writing to pronunciation (as it was
viewed upon by De Saussure, 1916), to a decomposed, step-wise conversion
in which several abstraction levels are passed between the levels of writing and
pronunciation.

Skousen: analogical modelling

A clear critique of the widely-accepted Chomskyan treatment of language
and language learning in mainstream linguistics, is formulated by the Amer-
ican linguist Royal Skousen (1989). He argues that Chomsky is as much a
structuralist as De Saussure and Bloomfield, and that Chomsky’s critique was
limited to the methodological assumptions put forward by the early struc-
turalists (viz. discarding meaning, and adopting too blunt learning methods).

Controversial as it may be to classify Chomsky under the structuralists,
the point that Skousen wants to make is that all mainstream-linguistic theories
have assumed rules to be the only means to describe any aspect of language
(Skousen, 1989). Indeed, De Saussure pointed out that analogy is employed to
discover rules of associations and rules of syntagmatic relations, which exist
in langue just as they exist in a domain with commonly-known rules such as
chess (Harris, 1987).

Instead, Skousen argues for an inherently analogical approach to language
and language learning. Explicitly deviating from De Saussure’s vague no-
tion of analogy, Skousen introduces a concrete definition of analogy that is
not based on rules. This definition does not differentiate, as mainstream lin-
guistic does, between regular language (i.e., language obeying rules), and
irregular language (i.e., exceptions to the rules); rather, it treats language in
an essentially unbiased way. Thus, to predict language behaviour, and to
model language learning, all that is needed is a large data base of examples
taken directly from language use, and a generically applicable method for
analogical modelling which is inherently inductive, but avoids the induction
of rules (Skousen, 1989; Derwing and Skousen, 1989).
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Skousen advocates the analogical-modelling approach by highlighting the
following advantages (Skousen, 1989):

(i) the analogical-modelling approach softens the undesirable all-or-none,
static behaviour of rule-based approaches with respect to exceptions
(which are only exceptions because, circularly, they do not fit the rules);
in language, the differences between regular data and exceptions are
usually graded, if they exist at all;

(ii) the approach is adaptive, rather than rigid, since it can adapt the learned
model to new instances of the same task as they are presented to the
analogical modelling algorithm;

(iii) it is much less complex than the discovery of rules, since it only involves
access to a data base with a relatively straightforward learning principle;

(iv) analogical modelling induces models of which the behaviour often ap-
pears to be rule-governed on the outside: apparently, when rules can
be employed to model the language task to be learned, they will be
implicitly captured by analogical modelling.

Inductive language learning without explicit rules and abstraction levels

We agree with Skousen that inductive language learning should not be con-
fined to the explicit induction of rules, but should be inherently analogical and
unbiased with respect to language data. Our approach thus avoids the ex-
plicit induction of rules and, consequently, a distinction between regular and
exceptional data. We investigate the possibility that the word-pronunciation
task can successfully be learned by taking such an unbiased approach. With
‘successful learning’, we mean that the induced system will be able to pro-
nounce new, unseen words with adequate accuracy. (The performance on new
words is henceforth referred to as generalisation accuracy.) Moreover, we aim
at demonstrating that such induction may be performed adequately without
the explicit assumption of more than the levels of spelling and pronunciation.

A primary requirement for such an investigation is a criterion to describe
adequacy of word-pronunciation generalisation accuracy. It would not suffice
to apply a learning algorithm to the word-pronunciation task once and show
that it can pronounce a good deal of new, unseen words correctly. More
experiments are needed:
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1. Systematic experiments are needed to incorporate linguistic-expert
knowledge in the task definition, in order to measure the positive or
negative effects of certain linguistically-motivated assumptions in the
task definition. Can word pronunciation be learned without such as-
sumptions in the task definition, or are certain assumptions (e.g., certain
abstraction levels between the levels of writing and speech, cf. Sec-
tion 1.1) essential for adequate accuracy?

2. We also need to compare the generalisation accuracy of the focus algo-
rithm to that of other algorithms. An empirically important comparison
would be between the focus algorithm and a well-chosen baseline ac-
curacy.

Inductive language learning should therefore be performed in an empiri-
cal and comparative modus of research. Employing an empirical, comparative
modus of research, it is possible to determine whether incorporating linguistic
assumptions into the task definition makes the task easier or harder to learn.
By varying the amount of linguistic assumptions in the task definition sys-
tematically, it is possible to chart in detail the influence of such assumptions
on the overall learnability (generalisation accuracy) of the task being studied.
Having compared the empirical results of the systematic experiments, one can
truly test the claim of inductive language learning: that a specific language
task (word pronunciation) can be learned with a generic inductive-learning
method.

1.3 Machine learning: tools for inductive language
learning

The method of our study of inductive language learning is to employ generic
inductive-learning algorithms to language tasks. Such algorithms have been
proposed and developed within the area of machine learning (ML). ML, a sub-
field of artificial intelligence (AI), investigates the computational realisation
of learning. Our basic approach to ML is thus to see it as a resource of learning
tools, among which the subset of tools desired for our study, i.e, the category
of inductive-learning methods. This does not give right to the fact that ML is
becoming a well-developed subfield of AI

�

.
�

Readers interested in the theoretical foundations of ML and important and current issues
in ML are referred to Shavlik and Dietterich (1990), and Michalski, Carbonell, and Mitchell
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Without going into detail about the state and developments of ML, it serves
purpose to note that inductive learning is regarded as an important category
of learning methods in supervised ML. Supervised ML concerns learning tasks
in which the classes of the task to be learned are given, or in which the func-
tion to be approximated is given (Shavlik and Dietterich, 1990). In contrast,
in unsupervised ML, the target classes or functions are not given and learn-
ing focuses on clustering or discovering classes or functions (Shavlik and
Dietterich, 1990; Cheeseman et al., 1988; Fisher, 1987). In this study we are
concerned with supervised ML. Induction can be said to come naturally with
generally-accepted definitions of supervised ML, which focus on the ability
of learning systems to adapt continuously to new examples of the task to be
learned (Simon, 1983; Michalski, 1993). As Simon (1983) states,

“Learning denotes changes in the system that are adaptive in the sense
that they enable the system to do the same task or tasks drawn from the
same population more efficiently and more effectively the next time.”
(Simon, 1983, p. 28, italics in original).

While other researchers have emphasised that learning should also include
the ability to transfer the learned knowledge after being trained on a particular
task to other related tasks (e.g., Carbonell, 1989), Simon’s (1983) definition
suffices for our purposes, since we investigate learning a single task at a time.

Learning by induction is the most obvious learning method to realise
the desired adaptive behaviour expressed by Simon’s definition, especially
when the notion of “task” is taken to refer to real-world tasks. Real-world
tasks are typified by exceptional, incomplete, or sometimes even inconsistent
instances; the real-world task of word pronunciation, the object of our study,
is no exception:

� Exceptions (‘noise’ would be the preferred term in ML) occur in word
pronunciation with single words of which the pronunciation conflicts
with a majority of similarly-spelled words. Examples in English are the
words have and having, associated with the exceptional pronunciation
/æv/ of the letters av pronounced differently in all other words with av.
Other examples of (parts of) words of which the peculiar pronunciations

(1983), the consecutive volumes of that series (Michalski et al., 1986; Kodratoff and Michalski,
1990; Michalski and Tecuci, 1994), and the recent text books by Langley (1996) and Mitchell
(1997).
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are better not used for determining the pronunciation of partly-similar
words are the words yacht, buoy, lieutenant, and quay

�

.

� Incompleteness can be found with homographs, i.e., pairs of similarly-
spelled words of which the meaning determines the pronunciation.
Incompleteness lies in the absence of indications of meaning in the
spelling. Examples in English are read, object, and suspect.

� Inconsistency is pervasive in English, particularly on the level of pro-
nouncing vowels: to quote the Dutch poet Charivarius (excerpted from
De Chaos, Charivarius, 1922):

Pronunciation —think of Psyche!—
Is a paling, stout and spikey;
Won’t it make you lose your wits,
Writing “groats” and saying groats?
( � � � )
Don’t you think so, reader, rather,
Saying lather, bather, father?
Finally: which rhymes with enough —
Though, through, plough, cough, hough, or tough?
Hiccough has the sound of cup � � �
My advice is — give it up!

Inductive learning is inherently flexible in its best-guess approach to
noisy, incomplete, and inconsistent examples typical of real-world tasks, al-
though the inherent flexibility does not guarantee that any task can be learned
(Breiman, Friedman, Ohlsen, and Stone, 1984; Quinlan, 1986; Kibler and Aha,
1987; Aha, Kibler, and Albert, 1991; Schaffer, 1993, 1994.). Thus, our aim
to employ inductive learning of word pronunciation, a real-world task, is
in accordance with the general opinion in ML identifying inductive learning
methods to be well-suited in principle. An inventory of available inductive-
learning algorithms which can learn real-world tasks will produce a selection
of specific algorithms with which we will conduct our study.

�

The four examples are loan words: yacht and buoy stem from Dutch, and lieutenant
and quay from French; loaning words from other languages plays a significant role in intro-
ducing peculiar pronunciations of (parts of) words.
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1.4 Problem statement

We have established the following:

� There is an apparent contrast between the view of traditional structural-
ist and Chomskyan linguistics on the possibility of inductive-learning
methods being able to learn language tasks such as word pronuncia-
tion. Traditional structuralists claim that it is possible or even essential;
Chomskyan linguists claim that it is impossible, since the abstraction
levels and rules assumed necessary cannot be learned autonomously by
generic learning methods such as induction.

� It has been proposed (Skousen, 1989) that both the traditional structural-
ists and mainstream Chomskyan linguists are incorrect in assuming lan-
guage to be governed by rules, and language learning to consist of the
discovery of rules. Language learning may well be realised by assuming
purely data-based analogical modelling as the learning method, which
is equivalent to inductive learning methods that do not explicitly induce
rules (cf. Daelemans, 1995; Daelemans, 1996b for similar arguments).
We adopt this method of inductive language learning, and extend it
to a comparative testbed method of learning, in which the explicitness
of linguistic assumptions in the task definition can be systematically
varied.

� Inductive-learning algorithms have been developed within ML; more-
over, theories of ML point to inductive learning constituting a set of
well-suited methods for learning to perform real-world tasks, since
inductive-learning methods are inherently flexible towards exceptions,
incompleteness, and inconsistencies which typically occur in real-world
tasks.

Furthermore, we have been collecting, since 1991, pieces of evidence that
inductive-learning algorithms can learn specific language tasks (Daelemans,
1995), among which subtasks of word pronunciation, such as hyphenation
(Daelemans and Van den Bosch, 1992a), syllabification (Daelemans and Van
den Bosch, 1992b), grapheme-phoneme conversion (Weijters, 1991; Van den
Bosch and Daelemans, 1993; Van den Bosch, Content, Daelemans, and De
Gelder 1995), and stress assignment (Gillis, Durieux, and Daelemans, 1993;
Daelemans, Gillis, and Durieux, 1994a). These studies involved different al-
gorithms, and differently-sized data sets of different languages. Although
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statements can only be made properly for each study separately, the studies
consistently demonstrate that inductive-learning algorithms that do not ex-
plicitly learn rules or abstraction levels can learn the language tasks with an
accuracy ranging form adequate to surprisingly high (cf. Daelemans, 1995).

With this background, we formulate our problem statement:

Can generic inductive-learning algorithms learn to pronounce written
words with adequate generalisation accuracy, even when the task def-
inition assumes none of the abstraction levels assumed necessary by
linguistic experts?

To answer this question the thesis is organised stepwise; each chapter
describes one step. The next section describes the sequence of steps taken.

1.5 Thesis outline

The thesis is organised as follows. Chapter 2 introduces (i) the selected
inductive-learning algorithms, (ii) linguistic theories and assumptions un-
derlying word pronunciation, and (iii) the methodology adopted for the
study. The introductory nature allows for readers familiar either with ML

and inductive-learning algorithms, or with (computational) morphology and
phonology, to skip the first and second section, respectively. The third sec-
tion on methodology describes in detail how the empirical part of the study,
described in Chapters 3 to 6, is performed systematically with fixed methods.

The “body” of the thesis is formed by the chapters describing the empirical
results of our experiments, viz. Chapters 3 to 6, organised according to the
systematic variations applied to the definition of the word-pronunciation task.
Over the chapters, the amount of linguistic assumptions incorporated in the
task definition is gradually decreased from considerable to none.

In Chapter 3, the linguistic assumptions concerning five different ab-
straction levels discerned within word pronunciation are translated into
five separate subtask definitions: the word pronunciation task is disman-
tled into (i) morphological segmentation, (ii) grapheme-phoneme alignment,
(iii) grapheme-phoneme conversion, (iv) syllabification, and (v) stress assign-
ment.

In Chapter 4, these five subtasks are sequentially coupled as modules
in modular systems. The sequential order is based on the sequential order
of subtasks in two existing systems for text-to-speech conversion. In the
same chapter, the linguistic assumptions on the modularisation of the task



1.5 THESIS OUTLINE 17

are weakened by testing equivalent modular systems with less modules, i.e.,
by integrating pairs of subtasks in single subtasks.

In Chapter 5, the idea of sequential modularisation is abandoned, and
instead different parallel modularisations are tested. In these systems,
linguistically-motivated subtasks are performed in parallel, under the as-
sumption that they can be performed independently. The number of parallel
modules is varied, and includes the bottom-line case of a single module,
which performs word-pronunciation in one single pass (thus, without the
assumption of any abstraction level).

In Chapter 6, the idea is elaborated that the word-pronunciation task can
also be decomposed by purely data-driven criteria, rather than by linguistic
criteria as in the parallel modular systems described in Chapter 5. It ex-
plores three gating systems, in which the word-pronunciation examples are
automatically divided into two non-overlapping subsets. The underlying
idea is that a successful gating method may lead to the decomposition of the
word-pronunciation task into partial word-pronunciation tasks with essen-
tially different characteristics, by which each partial task can be learned better
than the word-pronunciation task as a whole.

A summary and discussion of the empirical results is given in Chapter 7.
The chapter provides analyses of characteristics of the word-pronunciation
task enabling inductive learning to learn it, presents an overview of related
research, and identifies the novel contributions of our study, and provides a
list of indications for future research. Chapter 8 summarises the conclusions
drawn from the study.

Notes on typesetting

The text in the thesis is typeset in the Palatino font family. Words, parts of
words, or letters that serve explicitly as examples are typeset in the bold Hel-
vetica font, e.g., example, ple, and p. Exemplified pronunciations follow the
guidelines of the International Phonetic Alphabet, as proposed by the Inter-
national Phonetic Association (1993), and are always preceded and followed
by the ‘/’ mark, e.g., /pr � n � nsıeı

�
� n/. A list of all letters and phonemes used

is given in Appendix A.
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Chapter 2

Inductive learning of word
pronunciation

In this thesis we investigate the ability of generic inductive learning of word
pronunciation to attain adequate generalisation accuracy. For this investiga-
tion four requirements are assumed, viz. (i) the availability of implemented
inductive-learning algorithms, (ii) a definition of the word-pronunciation
task, (iii) the availability of instances of the task, and (iv) a well-defined
experimental methodology for applying the learning algorithms to the task.

The four requirements are treated in the Sections 2.1, 2.2, 2.3, and 2.4
of this chapter. In Section 2.1, three groups of generic inductive-learning
algorithms are identified; they are in principle suited for learning complex
tasks. For each group representative algorithms are selected and described.
Throughout the section, a small example word-pronunciation task (viz. the
pronunciation of the k in English words containing the two-letter string kn)
is used to demonstrate the functioning of the algorithms.

In Section 2.2, a description is given of the abstraction levels assumed nec-
essary by developers of mainstream word-pronunciation systems to perform
the task of word pronunciation, and definitions are formulated of the word-
pronunciation task and subtasks assumed by word-pronunciation system
developers, inspired by linguistic theory. In Section 2.3, details are provided
on the data base from which we acquire the word-pronunciation material
used throughout the thesis.

Section 2.4 describes the experimental methodology. It provides a descrip-
tion of the regimen under which all experiments are performed.

19
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2.1 Inductive-learning algorithms

Selecting a set of inductive-learning algorithms to be used in our experiments,
we define three conditions to which candidate inductive-learning algorithms
must adhere:

1. The inductive-learning algorithms must not distinguish explicitly be-
tween regular data and exceptions and use this distinction to ignore
certain instances on the basis of their exceptionality. With this condition
we bring about the argument adopted from Skousen (1989), that induc-
tive language learning should treat all language data in an unbiased
analogical manner, and avoid any distinction between (rule-governed)
regular data and exceptions that do not fit the rules (cf. Section 1.2).

2. The selected inductive-learning algorithms must be able to learn com-
plex tasks, that contain exceptions, incompleteness, and inconsistencies,
and for which large amounts of different instances are available, such
as the language task investigated here (cf. Section 1.3).

3. The algorithms must offer maximally different approaches to inductive
learning and to classification. This is to ensure that balanced statements
can be made as regards the advantages and disadvantages of the tested
algorithms (i.e., that statements can be made on the relations between
performance differences of algorithms and differences in their learning
approaches).

The first condition excludes two groups of inductive-learning algorithms.
First, it excludes algorithms in which learning involves removing exceptions
from the data until it represents only regular (rule-governed) or prototypical
data. Such algorithms generally employ a computational approximation of
the minimal description length principle (Rissanen, 1983). By employing utility
thresholds, they attempt to minimise the number of rules needed to cover
the data. Exceptions that do not fit the rules and are infrequent (e.g., below
a certain threshold) are ignored (i.e., no rules are generated for too small
amounts of data). Examples of such algorithms that ignore exceptions by
pruning them, or by editing the data, are the rule-induction algorithms CN2
(Clark and Niblett, 1989), FOIL (Quinlan, 1993), C4.5 with pruning (Quinlan,
1993), C4.5-RULES (Quinlan, 1993), and RIPPER (Cohen, 1995). An example al-
gorithm in which the data is reduced by explicitly removing exceptions (noisy
instances) but in which no rule induction is performed, is the instance-based
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algorithm IB3 (Aha, Kibler, and Albert, 1991); ‘edited � -nearest neighbour clas-
sifiers’ is a common term denoting instance-based learning algorithms that
remove noisy instances from memory during learning (Wilson, 1972; Voisin
and Devijver, 1987).

Second, the first condition excludes algorithms which assume expert
knowledge to be employed for representing the data. This can be said to
concern inductive logic programming (ILP) algorithms (Lavrac and Džeroski,
1994; Lavrac et al., 1996) and typical case-based reasoning (CBR) approaches
(Kolodner, 1993). Both approaches are capable of handling many types of
inputs (e.g., variable-length feature-value vectors, horn clauses, or acyclic
graphs), while also needing generally the incorporation of expert (domain)
knowledge to restrict the functioning of ILP and CBR algorithms within the
boundaries of computational feasibility (Lavrac and Džeroski, 1994; Kolod-
ner, 1993). The inclusion of expert knowledge is what our approach aims to
avoid, as well as explicitly inducing rules (cf. Section 1.2).

We do not claim that the algorithms excluded by the first condition are
unable to learn language tasks. It would constitute a separate line of research
to investigate their learning abilities and computational feasibilities; we are
not concerned with these issues here. Our approach attempts to take an
inherently unbiased approach towards language data, placing it opposite to
the mainstream linguistic claim that rules are necessary (cf. Section 1.2).

We identify three groups of algorithms not excluded by the first condition.
As will be demonstrated in this section, the algorithms in these groups do not
differentiate between regular and exceptional data in order to ignore the
exceptions:

1. connectionist learning;

2. non-edited instance-based learning; and

3. non-pruning decision-tree learning.

The learning abilities of these three groups of algorithms are relevant
current issues in machine-learning research. For all three groups it has been
argued theoretically that they can learn complex tasks, in principle, under
certain assumptions: Rosenblatt (1958), Hornik, Stinchcombe, and White
(1989), White (1990), and Faragó and Lugosi (1993) for connectionist learning;
Cover and Hart (1967) and Aha et al. (1991) for instance-based learning, and
Hunt (1962), Hunt, Marin, and Stone (1966), and Quinlan (1986) for decision-
tree learning. The three groups of algorithms thus adhere to the second
condition.
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The performance, mostly in terms of generalisation performance, of
inductive-learning algorithms from all three groups has been investigated
on complex language tasks for which large amounts of instances were avail-
able:

1. Connectionist-learning algorithms have been applied successfully to
English grapheme-phoneme conversion trained on the 20,000-word
NETTALK corpus (Sejnowski and Rosenberg, 1987); to English word hy-
phenation using a 89,000-word corpus (Van den Bosch et al., 1995); and
to Dutch hyphenation and syllabification using a 70,000-word corpus
(Van den Bosch and Daelemans, 1992). For all tasks, the connectionist-
learning algorithm involved, viz. back-propagation (Rumelhart, Hin-
ton, and Williams, 1986), was claimed to attain high accuracy in terms
of generalisation accuracy at least comparable to standard linguistic
rule-based approaches.

2. Instance-based learning algorithms were also applied to a wide range
of language tasks, e.g., the NETTALK task (Weijters, 1991; Van den Bosch
and Daelemans, 1993); grapheme-phoneme conversion in French and
Dutch trained on 20,000-word corpora (Van den Bosch and Daelemans,
1993); and morphological segmentation trained on a 75,000-word corpus
(Van den Bosch, Daelemans, and Weijters, 1996).

3. Applications of decision-tree learning algorithms to the NETTALK task
were demonstrated to be successful in terms of generalisation accuracy,
and to be equally or more accurate than back-propagation (Dietterich,
Hild, and Bakiri, 1995; Dietterich and Bakiri, 1995; Van den Bosch et al.,
1995). The same was demonstrated for Dutch grapheme-phoneme con-
version, trained on a 70,000-word corpus; this decision-tree learning al-
gorithm was demonstrated to outperform a state-of-the-art rule-based
grapheme-phoneme-conversion model (Van den Bosch and Daelemans,
1993).

The third condition is fulfilled by the three groups of algorithms differing
maximally in two dimensions of inductive learning, viz. (i) learning effort and
(ii) classification effort:

� The learning effort dimension ranges from a minimal to a maximal
computational effort put in inducing information from task instances
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presented during learning. A minimal learning effort occurs in algo-
rithms which simply store all training material in memory, without
further processing of this material. Maximal learning effort occurs in
algorithms in which learning takes a potentially infinite time, and in
which complex (e.g., recursive) indexing, abstraction, or compression
processes are applied to the training material.

� The classification effort dimension ranges from minimal to maximal
computational effort invested in the retrieval of stored information to
classify instances of the trained task. Minimal classification effort oc-
curs when classification of new instances is performed in a deterministic,
non-backtracking, single-pass process. Maximal classification effort oc-
curs when classification of new instances involves a brute-force search
through all information stored in memory.

Figure 2.1 visualises the two dimensions as � -axis and � -axis, respectively,
spanning up a two-dimensional space in which the three groups of algo-
rithms can be found. It illustrates that each of the three groups of algorithms
is located near the end of at least one of the two dimensions.This visualisa-
tion is schematic and should be interpreted as rough estimates of practical
computational effort, such as processing time (e.g., in cpu cycles) or memory
(e.g., in bytes). In addition to these rough estimates, we provide asymptotic
complexity analyses for the three groups of algorithms and report on memory
usage and processing time in detail in Chapter 7. Estimating the coordinates
of algorithm groups in Figure 2.1 in practical terms is oblivious of the fact that
algorithms from one group may be implemented as algorithms from another
group; e.g., instance-based learning and decision-tree learning may be imple-
mented in connectionist networks (e.g., Ivanova and Kubat, 1995). Moreover,
the two-dimensional figure ignores other dimensions relating to theoretical
(e.g., worst-case, lower-bound, upper-bound) complexities, limitations, and
abilities.

The learning effort invested by connectionist learning is potentially max-
imal. The connectionist-learning process is a set of repetitive, complex ma-
trix operations, which generally need to be constrained by stopping crite-
ria. Moreover, connectionist learning constitutes a complex encoding and
decoding of symbolic information through non-symbolic intermediary rep-
resentations. The classification effort in connectionist-learning algorithms is
moderate (in terms of processing); it involves the same encoding and decod-
ing process as the learning component, but it lacks the computational burden
of the costly repetitive matrix operations employed during learning.
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Figure 2.1: Schematic visualisation of the position of the three inductive-
learning-algorithm groups within the two-dimensional space
bounded by the learning-effort dimension and the generalis-
ation-effort dimension.

Instance-based learning is characterised by a near-minimal learning effort.
Learning involves storing instances straightforwardly in memory in a data
base of instances. Classification effort, in contrast, is maximal, involving
a brute-force search through the constructed instance base, investigating all
information present in the data base. In Section 1.2, we characterised this type
of inductive learning as ‘on demand’ (p. 6): classification of new instances is
delayed until these instances are actually presented.

Decision-tree learning is characterised by a moderate learning effort.
Learning is relatively fast and deterministic, but involves a recursive process
of indexing and compressing an instance base into a decision tree. Classifica-
tion effort in decision trees is near minimal; it involves a simple, deterministic,
non-backtracking pass through the decision tree.

Altogether, Figure 2.1 displays a good dispersion of the three algorithm
groups within the two-dimensional space bounded by the two dimensions.
Thus, the third condition is met.

The unoccupied areas in Figure 2.1, viz. the upper right corner and
the lower left corner, indicate the position of groups of inductive-learning
algorithms not meeting the second condition for candidate learning algo-
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rithms. Algorithms displaying minimal learning effort as well as minimal
classification effort (i.e., in the lower left corner) can be expected to display
low generalisation accuracy when trained on complex tasks. Alternatively,
algorithms displaying high learning effort as well as moderate to high classi-
fication effort (i.e., in the upper right corner) run the risk of being infeasible
in terms of processing time, memory requirements, or both, when applied to
complex tasks with large amounts of training material. We have reason to
assume that Skousen’s (1989) analogical-modelling algorithm is an example
of the latter type of algorithm. The examples and analyses of the function-
ing of the algorithm presented by Skousen (1989) show that the algorithm
behaves computationally rather costly with respect to memory and learning
(Skousen, 1989, p. 51). Daelemans, Gillis, and Durieux (1994b) show that
the analogical-modelling algorithm is exponential in the number of features.
The limitations of the algorithm forced Skousen in a number of examples to
introduce linguistic expert knowledge (albeit somewhat low-level) to reduce
the number of input features (Skousen, 1989), which is what we aim to avoid
in our study. Skousen claims that in the absence of readily-available massive
parallel processing machines, his algorithm will suffer from these limitations
(Skousen, 1989, p. 52).

Having selected the groups of inductive-learning algorithms, we need
instantiations of learning algorithms within these groups to be employed in
our experiments. For each of the three groups we select one representative,
well-known algorithm, viz. back-propagation (BP) (Rumelhart et al., 1986) for
connectionist learning, IB1 (Aha et al., 1991) for instance-based learning, and
C4.5 (Quinlan, 1993) for decision-tree learning. Subsequently, we add to each
of the latter two algorithms one algorithmic variation which was demon-
strated earlier in empirical research to perform well on complex language
tasks. First, IB1-IG (Daelemans and Van den Bosch, 1992a; Daelemans, Van
den Bosch, and Weijters, 1997a) is selected as being a variation of instance-
based learning in IB1. IGTREE (Daelemans et al., 1997a) is selected as a variation
of decision-tree learning in C4.5 (although it can be seen as an optimisation of
IB1-IG as well, cf. Daelemans et al., 1997a).

In Subsection 2.1.1, we introduce the task of pronouncing kn in English
words, a subtask of word pronunciation with which the functioning of the
algorithms is illustrated. BP is described in Subsection 2.1.2; IB1 and IB1-IG are
described in Subsection 2.1.3, and Subsection 2.1.4 describes C4.5 and IGTREE.
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2.1.1 A sample task: Pronouncing kn

As an example of a small subtask of word pronunciation we introduce the
kn task, with which we will demonstrate the functioning of the inductive-
learning algorithms in Subsections 2.1.2 to 2.1.4. The kn task is defined as
determine the pronunciation of the k in kn in a word containing this two-letter
string. The pronunciation of the letter combination kn in English words is
irregular. When collecting examples of English kn words, one finds that the
k in kn is generally not pronounced: e.g., as in knock, knife, knight, knot, and
unknown. Some examples, however, show that when the k and the n belong
to different parts (morphemes) of the word, the primary rule is overruled and
the k is pronounced: e.g., as in banknote, meekness, and weeknights. In other
examples, the k is pronounced when it is preceded by a c, as in picknick or
cockney � ; a morpheme boundary does not always occur in these cases.

CELEX (Van der Wouden, 1990; Burnage, 1990) is a collection of lexical
databases of English, Dutch, and German words. It is used throughout this
thesis as the source for word-pronunciation data. In CELEX, we found 270
English words containing the two-letter string kn � . The k is not pronounced
in 223 of these words (83%).

For experimenting with the five learning algorithms learning the kn task,
the 270 words with their specific pronunciations of the k in kn need to be
formatted as instances of the kn task. An instance is a combination of a rep-
resentation of the word and its associated classification, e.g., a representation
of the word weeknight and its associated classification ‘the k is pronounced’.
Once a set of instances is available, the algorithms can perform their specific
type of inductive learning. Instances on which inductive learning is based are
referred to as training instances. After inductive learning has been completed,
the algorithm can classify instances for which the associated classification is
unknown. Instances with associated classifications unknown to the learning
algorithm are referred to as test instances.

The five learning algorithms all require that the instance representations
of the words be represented by vectors of feature-value pairs. The features
are the word positions, and the values are the letters. Moreover, the length
of these vectors needs to be fixed. This implies that the words themselves
cannot be used as instances, since they have different numbers of letters, and
that a sizing method is needed. For the case of the kn task, we place a virtual
�
In these cases in which k is preceded by a c, in which we consider the k to be pronounced,

it is actually the letter group (or grapheme) ck that is pronounced as /k/.�
Upper-case K and N are counted as, and converted to, lower-case k and n.
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# left k n right classification
1 o r e k n o w n /-/
2 k n e e c /-/
3 k n i t t /-/
4 s i c k n e s s /k/
5 o r e k n e w ?

Table 2.1: Five examples of instances of the kn-task. The instances are gen-
erated by windowing of the words foreknown, kneecaps, knitting,
sickness, and foreknew, respectively. The final word is the test
word.

window on the word, positioning kn in the centre, and including three letters
to the left of kn, and three letters to the right of kn. Each word is thus converted
into a vector of eight feature-value pairs. The first three feature-value pairs
represent the three left-context letters to kn, the fourth and fifth feature-value
pairs represent k and n, respectively, and the final three feature-value pairs
represent the three right-context neighbour letters. Since the window of the
windowing method may extend beyond word boundaries, e.g., when kn is at
the beginning of a word (cf. instances 2 and 3 in Table 2.1), an extra feature
value is introduced, viz. ‘ ’. This symbol acts as a feature value as any other
letter.

The instances are divided over a training set and a test set. We create
a simple test set containing only one instance, oreknew , derived from the
word foreknew; the training set contains all other 269 instances. Table 2.1
displays the test instance oreknew and four example training instances. The
classification of instances of the kn task is encoded by two labels, viz. /-
/, denoting that the k is not pronounced, and /k/, denoting that the k is
pronounced. The question mark in the classification field of the test instance
oreknew indicates that the classification of this instance is not known to the
learning algorithms. Of course, the correct classification of this instance is
/-/; this knowledge will be compared to the actual classification output of
the algorithms in Subsections 2.1.2 to 2.1.4.

The locality assumption

Our method for constructing fixed-size feature-value representations of words
ignores the fact that kn can be preceded (as in sleeping-sickness) and followed
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(as in knitting-machines) by more than three letters: we deliberately constrain
the context included in each instance. We do this because we assume that
the eight letters represented in the instances contain sufficient information for
the algorithms to learn the classifications of all training instances successfully
as well as to classify test instances optimally. We assume that the kn task
can be learned using only local information immediately surrounding kn.
This is a strong assumption; we will henceforth refer to it as the locality
assumption. It will be maintained throughout this thesis, for different types
of word-pronunciation tasks and subtasks, and will be critically discussed in
Chapter 7.

2.1.2 A connectionist-learning algorithm

The study of connectionist systems, or artificial neural networks (ANNs)
(Rumelhart and McClelland, 1986; Anderson and Rosenfeld, 1988), is at least
as multi-disciplinary as the field of machine learning, with which it partly
coincides. ANNs are systems composed of highly interconnected networks of
nonlinear computing elements, whose structure is inspired by early knowl-
edge of biological neural systems. In these systems, learning rules govern the
process of changes in the connections between the computing elements in the
network (analogous to the synaptic connections between brain cells).

Back-propagation

For our experiments, we employed the well-known BP learning rule (Rumel-
hart et al., 1986)

�

. We provide a description of BP and illustrate its functioning
by applying it to the kn task. BP is a learning algorithm designed for a specific
type of ANNs, viz. multilayer feed-forward networks (MFNs). MFNs are com-
posed of interconnected computing elements (henceforth referred to as units)
organised in three or more layers: an input layer, an output layer, and one or
more hidden layers. In an MFN successfully trained with BP on a classification
task, the input layer represents the feature values of instances, and the output
layer represents the class to which the instance belongs, i.e., its associated
classification. All units of a layer are connected to all units of the adjacent
layer(s), i.e., each adjacent pair of layers is fully connected.

�

Although ‘BP’ was coined by Rumelhart et al. (1986) and although the BP learning algorithm
was popularised due to the wide acceptance of their description, it was proposed earlier by
Werbos (1974) and reinvented by Parker (1985).
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Each unit has an activation, i.e., a real value between � and � . Activations
of input units represent feature values of instances; activations of hidden
units and output units are determined via activation propagation. During this
process, each input unit’s activation is propagated over all connections from
that input unit to all hidden units. Propagated activations are multiplied by
the weight of the connection, which is a real-valued number between ��� and
�

�

. The net input of a hidden unit is the sum of all weighted activations it
receives over its connections with all input units. The activation of the hidden
unit is then computed by converting the net input to a number between � and
� . We use a sigmoidal function to perform this conversion (cf. Rumelhart et
al., 1986). The equation for this function is given in Appendix B as Eq. B.2.
Activations of output units are computed analogously (output units receive
their net input from the hidden units).

We now turn to the role of the back-propagation learning algorithm (BP).
Ideally, the activation of input units representing the feature values of an
instance leads via activation propagation to an activation of output units
representing the associated classification of the instance. The accuracy of this
classification is crucially dependent on the values of the connection weights.
The goal of BP is to find values of the connection weights enabling such
mappings.

BP is invoked by entering a training phase of repeated cycles. In one cycle, all
training instances are presented to the MFN. For each instance, the input unit
activations are set to encode the instances’ feature values, and activation prop-
agation determines the activation of the output units. When the difference
between an output unit’s desired and actual activation is larger than a thresh-
old value � , BP changes the weights of the connections from all hidden units to
this output unit according to the generalised delta rule (Rumelhart et al., 1986):
for each connection to the output unit, a weight change is computed which is a
multiplication of (i) the error of the output unit, (ii) the activation of the hid-
den unit at the other end of the connection, and (iii) a value representing the
learning rate parameter, set to � ��� in our experiments; to the resulting value, a
portion of the weight change at the previous instance presentation is added to
the current weight change. The momentum parameter (Rumelhart et al., 1986)
determines how large this portion is (it is set to � ��� in our experiments). The
threshold value � mentioned above is an addition to the standard definition
of BP; it results in an automatic reduction of the number of weight changes as
compared to standard BP, and results in reductions in learning time, with our

�

In our experiments, the absolute values of the weights cannot exceed 	�

� � .
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typical data, by about a factor 2 to 3. In Appendix B, a detailed description is
given of the generalised delta rule for connection-weight changing between
all layers in the MFN.

After each cycle, a network error is computed, which is a cumulative error
over all instances. This error can be used to determine whether training can be
stopped. We define the network error as the percentage of training instances
classified incorrectly during one cycle. The training phase is halted (i) when
the network error does not differ from the network errors measured during
the previous four cycles (the halting patience parameter) within a margin of
0.25% (the patience threshold parameter), or (ii) when the error reaches 0.0%. If
neither of these two conditions is met, another cycle is entered.

Upon completion of the training phase, the MFN can be used to classify test
instances in a test phase. This is done by performing activation propagation
after the input units are assigned activation values representing the feature
values of the test instance. All output units receive a certain activation; the
output unit with the highest activation is taken as the classification of the
instance.

BP can learn complex tasks when at least two conditions are met: (i) an
adequate network architecture must be chosen, specifying the appropriate
number of hidden layers and number of units per layer, and (ii) the learning
rate and momentum parameters must be set to appropriate values. No sound
rules are available for determining the optimal parameter values. Only heuris-
tics and rules-of-thumb are available (Moody, 1992; Weigend and Rumelhart,
1994; Lawrence, Giles, and Tsoi, 1996); moreover, only limited freedom is
allowed to search for appropriate numbers and values by performing exper-
iments with BP on MFNs, when the results from these experiments should be
statistically sound (cf. Subsection 2.4.2).

When applying BP to the kn task, one must first establish a coding scheme
for translating feature values of instances into input unit activations, and for
translating instance classifications into output unit activations. We choose
to assign each individual feature value one unit in the input layer, and to
assign each individual classification one unit in the output layer: absence
and presence of input feature values and output classifications is represented
by activation values of 0 and 1 for input units, and 0.1 and 0.9 for output
units � , respectively. The instances of the kn task are characterised by eight
features

�
� � � �

���
. In the 270 words containing kn, different letters occur at

�
Output units are trained to have activation values 0.1 and 0.9, rather than 0 and 1, since

the slight offset of 0.1 speeds up learning by BP (Sarle, 1997).
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Figure 2.2: Visualisation of the MFN used in the application of BP on the kn
task. The groups of input units representing the feature values of
each of the features are indicated by

�
� � � �

���
. Not all connections

between input units and hidden units are shown.

each of these features, albeit not all letters of the alphabet: for example, at���
, i.e., the feature representing the letter position immediately to the right

of kn, only the letter values a, e, i, o, and u occur. All occurrences of feature
values in the eight features add up to an input layer of 84 units. The output
layer contains two units, one for representing /-/, and one for representing
/k/. We choose an MFN architecture with one hidden layer containing four
units. This choice is arbitrary. The settings lead to an MFN containing a total
of
� ��� ������� � �	� � units (the last unit in the addition is the bias unit, cf.

Appendix B), and 
 � ��� ��
���
 ������
�� ����� ����� � connections. This MFN is
displayed schematically in Figure 2.2 (not all connections are shown for the
purpose of graphical clarity).

Applied to the kn task, the training phase takes 17 cycles, after which all
training instances are classified correctly and the stopping criterion is met.
Figure 2.3 displays the network error curve, i.e., the percentage classification
error on training instances during the training phase. As can be seen in
Figure 2.3, the amount of error decreases fairly smoothly until the ninth cycle,
after which the error does not decrease for three cycles. During this period,
the network already classifies 266 out of the 269 instances correctly; only the
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Figure 2.3: Network error curve of BP-training of the kn task. The network
is trained for 17 cycles, after which the error on the training set
reaches 0.0%.

instances topknots, lipknots (from slipknots), and kness (from Knesset
�
)

are classified incorrectly. After the fourteenth cycle, topknots and lipknots are
classified correctly, and during the final three cycles the correct classification
of kness (/k/) is learned.

When the test instance oreknew is presented to the network, activation
propagation leads to the following activation values of the two output units:
0.57 for the unit representing the /-/-class, and 0.43 for the unit representing
the /k/-class. We take the classification to be the label of the output unit with
the highest activation, viz. /-/. Thus, BP can reproduce the classifications of
the training instances of the kn task successfully after training, and classifies
the test instance oreknew correctly as /-/.

2.1.3 Two non-edited instance-based-learning algorithms

Instance-based learning is partly based on the hypothesis that performance
in classification tasks may be successfully based on analogical reasoning,
i.e., on computing the analogy (i.e., similarity, cf. Section 1.2) between new
instances and stored representations of instances encountered earlier, rather

�

Knesset, a proper name from Hebrew, is the only word in English beginning with kn
in which the k is pronounced. Upper-case characters are converted to lower-case (Subsec-
tion 2.1.1.)
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than on the application of rules abstracted from earlier experiences (Aha et al.,
1991; Aha and Goldstone, 1992; Daelemans, 1995). Instance-based learning
is sometimes referred to as lazy learning, due to the minimal effort put in the
learning process. We characterised this type of inductive learning earlier as
‘on demand’ (p. 6). Synonymous terms found in the literature are exemplar-
based, case-based, and memory-based learning or reasoning (Stanfill and
Waltz, 1986; Kolodner, 1993).

We describe two instance-based learning algorithms that do not employ
editing of the data to remove exceptions, viz. IB1 and IB1-IG, descendants
of the � -nearest neighbour algorithm (Cover and Hart, 1967; Devijver and
Kittler, 1982; Aha et al., 1991).

IB1

IB1 (Aha et al., 1991) constructs a data base of instances (the instance base) dur-
ing learning. An instance consists of a fixed-length vector of � feature-value
pairs, an information field containing the classification(s) of that particular
feature-value vector, and an information field containing the occurrences of
the classification(s). The two information fields thus keep track of the oc-
currence of the feature-value vector in the training set, and the number of
associated classifications of the vector occurrences. After the instance base is
built, new (test) instances are classified by matching them to all instances in
the instance base, and by calculating with each match the distance between
the new instance

�
and the memory instance � , � 
 ��� ��
 , using the function

given in Eq. 2.1:

� 
 ��� ��
 � �� 	


�

� 
 �
	


� 
 �

	 � �
	

 � (2.1)

where
� 
 ��� 
 is the weight of the

�
th feature (in IB1, this weight is equal by

default for all features), and � 
 �

	 �
�

	

 is the distance between the values of the�

th feature in the instances
�

and � . When the values of the instance features
are symbolic, as with our tasks, a simple distance function is used (Eq. 2.2):

� 
 �
	 � �

	

 � �

� � � 	 ���
	��������

� � (2.2)

The classification of the memory instance � with the smallest � 
 ��� � 
 is then
taken as the classification of

�
. This procedure is also known as 1-NN, i.e., a

search for the single nearest neighbour, the simplest variant of � -NN (Devijver
and Kittler, 1982).
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We have made three additions to the original IB1 algorithm (Aha et al.,
1991) in our version of IB1 (Daelemans and Van den Bosch, 1992a; Daele-
mans et al., 1997a). First, when a single best-matching instance is found
associated to more than one classification, our version of IB1 selects the clas-
sification with a highest occurrence in the instance’s class distribution. Sec-
ond, when a single best-matching instance is found associated with more
than one classifications with equal occurrences, the classification is selected
with a highest overall occurrence in the training set. Third, in case of more
than one best-matching memory instance, the classification is selected with
a highest occurrence as summed over the classification distributions of all
best-matching instances. On finding more than one best-matching instances,
this function merges the classification distributions of all best-matching in-
stances and selects the classification with the highest overall occurrence in
this merged distribution (Daelemans et al., 1997a).

In our implementation of IB1, we have optimised classification by dividing
it into two phases. First, IB1 searches for duplicate instances (i.e., instances
in the instance base with totally identical feature values as the test instance)
in the instance base using an alphabetised index. Since duplicate instances
are necessarily best-matching, the search can be halted when duplicates are
found (which, for our data, occurs relatively frequently; cf. Chapter 3 and
onwards); their classification determines the classification of the test instance.
If no duplicates are found, IB1 enters the second phase in which simply all
instances in the instance base are matched against the test instance.

When IB1 is applied to the kn task, it builds an instance base containing 134
instances, i.e., all uniquely sorted instances accompanied by their class labels
and class occurrence counts. Figure 2.4 displays a part of the instance base
with ten example instances. Each instance is stored as eight feature values,
one class label (no instances map to more than one class for this task), and
an occurrence count. The test instance oreknew is matched against all 134
instances, and each match produces a distance. The minimal distance found
during the matching process is � , viz. with the instance oreknow (from the
word foreknow). As there is no other best-matching instance, the class of the
best-matching instance, /-/, is taken as output. Thus, IB1 correctly produces
/-/ as the classification of oreknew : the k is not pronounced.

IB1-IG

IB1-IG (Daelemans and Van den Bosch, 1992a; Daelemans et al., 1997a) differs
from IB1 in the weighting function

� 
 �
	

 (cf. Eq. 2.1). The weighting func-
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Figure 2.4: Visualisation of a part of the instance base constructed by IB1
applied to the kn task. The test instance oreknew is matched
against all stored instances. The class /-/ of the best-matching
instance oreknow (highlighted by bold-faced letters) is taken as
classification of the test instance.

tion of IB1-IG,
� � 
 �

	

 , represents the information gain of feature

�
	
. Weight-

ing features in � -NN classifiers such as IB1 is an active field of research (cf.
Wettschereck, 1995; Wettschereck et al., 1997, for comprehensive overviews
and discussion). Information gain is a function from information theory also
used in ID3 (Quinlan, 1986) and C4.5 (Quinlan, 1993). Appendix C provides the
details for computing the information gain of features given an instance base.
The information gain of a feature expresses its relative relevance compared to
the other features when performing the mapping from input to classification.
Using the weighting function

� � 
 �
	

 acknowledges the fact that for some

tasks, some features are far more relevant (important) than other features.
When

� � 
 �
	

 replaces

� 
 �
	

 in the distance function (Eq. 2.1), instances that

match on a feature with a relatively high information gain are regarded as
less distant (more alike) than instances that match on a feature with a lower
information gain.

IB1-IG is a filter model (John, Kohavi, and Pfleger, 1994): the feature weights
are computed before instances are classified. In contrast, in wrapper models
(John et al., 1994) optimal feature weights or selections are searched in a sep-
arate phase before testing, in which the induction algorithm is systematically
trained and tested on subsets of the learning material with different feature
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Figure 2.5: Information-gain values of the eight features of kn instances.

selections (John et al., 1994). Searching for optimal feature selections (i.e.,
feature weights of 0.0 and 1.0) is computationally less costly than searching
for optimal real-valued weights, which favours employing the wrapper ap-
proach in combination with feature selection (John et al., 1994). However,
Wettschereck, Aha, and Mohri (1997) note that real-valued weighting meth-
ods tend to outperform feature selection for tasks where some features are
useful but less important than others. The latter tends to be the case for the
(sub)tasks investigated here (cf. Appendix D), and it holds for the feature
weights of the kn task. We choose to apply the filter approach because we
suspect that searching real-valued feature weights in a wrapper approach is
computationally very inefficient as compared to the filter-model approach,
given the typical sizes of our data sets (cf. Section 2.3). Thus, our choice is
motivated by considerations on feasibility; we do not exclude the possibility
that a wrapper approach would yield similar or superior performance (e.g.,
in terms of generalisation accuracy), given enough computing resources and
time.

Figure 2.5 displays the information-gain values computed over the in-
stance base of 270 kn instances. As the fourth and fifth features have a single
constant value (k and n), they have an information gain of � . The feature with
the highest information gain is the seventh feature, i.e., the second context
letter to the right of kn. The feature with the second-highest information gain
is the first feature (the third context letter to the left), closely followed by the
third feature (the first context letter to the left).
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Figure 2.6: Visualisation of a part of the instance base constructed by IB1-IG

applied to the kn task. An example test instance, oreknew , is
matched against all stored instances. The class /k/ of the best-
matching instance (highlighted by bold-faced letters) is taken as
classification of the test instance.

Applying IB1-IG to the kn task, an identical instance base is constructed
as with IB1. The new information-gain-weighted similarity function now
operates as exemplified in Figure 2.6, in which the test instance oreknew
is matched against ten example instances. IB1-IG finds one best-matching
instance, viz. oreknow (from foreknow), the same best-matching instance as
found by IB1. Subsequently, IB1-IG correctly classifies oreknew as /-/, i.e., the
k is not pronounced.

2.1.4 Two non-pruning decision-tree learning algorithms

In this subsection we describe C4.5 (Quinlan, 1993), and IGTREE (Daele-
mans et al., 1997a). Learning in C4.5 and in IGTREE takes the form of decision-
tree learning, also known as top-down induction of decision trees (TDIDT).
The decision-tree-learning approach is based on the assumption that similar-
ities between subsets of instances can be exploited to compress an instance
base as used by IB1 and IB1-IG into a decision tree, largely retaining the ability
to generalise. Decision-tree learning is sometimes referred to as eager learning,



38 CHAPTER 2. INDUCTIVE LEARNING OF WORD PRONUNCIATION

in contrast with the lazy learning of instance-based approaches, since a major
computational effort of constructing decision trees occurs at learning time.
Decision-tree learning is a well-developed field within AI. See, e.g., Safavian
and Landgrebe (1991) for a survey; Quinlan (1993) for a synthesis of major
research findings; and Hunt et al. (1966) and Breiman et al. (1984) for older
accounts of decision trees from the statistical pattern-recognition area.

We begin by describing IGTREE, since it can be seen as an optimisation
of IB1-IG, the previously described algorithm. It is a variation of C4.5, the
description of which follows that of IGTREE.

IGTREE

IGTREE (Daelemans et al., 1997a) was designed as an optimised approximation
of IB1-IG. In IB1-IG, information gain is used as a weighting function in the
similarity metric; in IGTREE, information gain is used as a guiding function to
compress the instance base into a decision tree. Instances are stored in the
tree as paths of connected nodes ending in leaves which contain classification
information. Nodes are connected via arcs denoting feature values. Inform-
ation gain is used in IGTREE to determine the order in which feature values
are added as arcs to the tree � .

Feature-value information is stored in the decision tree on arcs. The first
feature values, stored as arcs connected to the tree’s top node, are those
representing the values of the feature with the highest information gain,
followed at the second level of the tree by the values of the feature with
the second-highest information gain, etc., until the classification information
represented by a path is unambiguous. Knowing the value of the most
important feature may already uniquely identify a classification, in which
case the other feature values of that instance need not be stored in the tree.
Alternatively, it may be necessary for disambiguation to store a long path in
the tree. The difference in path lengths allows for a graded working definition
of the concept of regularity: the more regular the instance is, the shorter its
path in the tree.

The tree is compressed optionally in a second stage by recursively pruning
all leaves which are labelled with the same class as their parent node, as the
class information of these children does not contradict the (default) class

�
The kind of tree built by IGTREE is related to the concept of letter trie proposed by Knuth

(1973). A letter trie compresses a lexicon of letter strings (e.g., spelling words) into a trie
structure, in which the letters of the strings are stored as (overlapping) arcs from left to right.
Using letter tries, lexical look-up can be made more efficient, and less memory consuming.
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information already present at the parent node. This compression does not
affect IGTREE’s classification accuracy.

Apart from storing uniquely identified class labels at each leaf, IGTREE

stores at each non-terminal node information on the most probable classi-
fication given the path so far, according to the classification bookkeeping
information maintained by the tree construction algorithm. The most proba-
ble classification is the most frequently occurring classification in the subset
of instances being compressed in the tree. This information is essential when
processing new instances. Processing a new instance involves traversing the
tree by matching the feature values of the test instance with arcs the tree, in
the order of the feature information gain. Traversal ends when (i) a leaf is
reached or when (ii) matching a feature value with an arc fails. In case (i), the
classification stored at the leaf is taken as output. In case (ii), we use the most
probable classification on the last non-terminal node most recently visited
instead.

For more details on IGTREE, see Appendix E, which provides a pseudo-
code description of IGTREE’s procedures for constructing decision trees and
retrieving classifications from the trees; see also Daelemans et al. (1997a).

Applying IGTREE to the kn task, given the information-gain ordering of
features as displayed in Figure 2.5, yields the decision tree as visualised
in Figure 2.7. This tree contains thirteen nodes, of which seven are leaves
containing unambiguous class labels. It can be seen from Figure 2.7 that at
each level in the tree one feature is tested, starting with feature

�
� , which is

computed to have the highest information gain (see Figure 2.5), followed by�
� , and

�
� , respectively; at the third level, all classifications are disambiguated.

The classification of the test instance oreknew is retrieved from the tree in
Figure 2.7 by a very short traversal: the value at the most important feature�

� of oreknew , viz. w, matches with none of the arcs stemming from the top
node (viz. c, g, m, s, t, and y). When no matching feature value at an arc
is found, traversal to the tree is stopped, and the classification of the most
recently visited node is taken, which in this case is the top node. Since this
node is labelled /-/ (i.e., the most frequently occurring class in the training
set), /-/ is correctly taken as the classification of oreknew . The k is not
pronounced in oreknew , according to IGTREE.

C4.5

C4.5 (Quinlan, 1993) is a decision-tree learning algorithm which basically
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Figure 2.7: Visualisation of the decision tree after application of IGTREE on
the kn task.

uses the same type of strategy as IGTREE to compress an instance base into a
compact decision tree.

There are three relevant differences between both algorithms. First, C4.5
recomputes the information gain values of the remaining features in the subset
of instances investigated for each new arc. In contrast, IGTREE computes the
information gain of features only once on the basis of the complete training
set.

Second, C4.5 does not implement the second compression stage of IGTREE.
Instead it has an optional pruning stage, in which parts of the tree are removed
as they are estimated to contribute to instance classification below a tunable
utility threshold. This implies that in C4.5, the principle of storing all necessary
knowledge for the classification of all training instances (as implemented in
IGTREE) is not maintained when the utility threshold is set at less than 100%.
Quinlan argues that this threshold should be set somewhat below 100% (e.g.,
at 90%) to prevent unwanted storage of low-occurrence exceptions or noise
(Quinlan, 1993), usually referred to as small disjuncts (Holte et al., 1989).
Ignoring exceptions is what our inductive language learning approach aims
to avoid (cf. Sections 1.2 and 2.1). Therefore, all experiments were performed
with the utility threshold of 100%, i.e., pruning was disabled.

Third, C4.5 can consider groups of feature values as if they were single
values. This is especially useful when it results in a higher information gain
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Figure 2.8: Visualisation of the decision tree after application of C4.5 on
the kn task. The bold-faced line follows the retrieval of the
classification of the oreknew instance.

(ratio) (Quinlan, 1993). In the remainder of this thesis, C4.5 is applied with
this parameter selected.

Figure 2.8 displays the tree generated by C4.5
�

when applied to the kn
task. The tree contains twelve nodes. Retrieval of the classification of the
test instance oreknew from this tree proceeds as follows (and is displayed
in Figure 2.8 by bold-faced lines): (i) the value at feature

�
� of oreknew , w,

matches with the value w in the second group of feature values distinguished
by C4.5; (ii) a non-terminal node is met, consequently, traversal continues;
(iii) the value at feature

�
� , o, matches with the value o in the third group

of feature values; (iv) a non-terminal node is met, consequently, traversal
continues again; (v) the value at feature

�
� , e, matches with the value e in the

first group of feature values; (vi) a leaf node is met, labelled /-/: on meeting
this leaf node traversal is halted and the class label /-/ is produced as (correct)
output. According to C4.5, the k is not pronounced.

�

Our experiments are performed with release 7 of C4.5.
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Figure 2.9: Classical decomposition of natural language into six linguistic
domains, separated by dashed lines. The dotted-line box high-
lights the two domains investigated in this thesis, viz. morphol-
ogy and phonology, in short morpho-phonology.

2.2 Theoretical background of word pronunciation

To provide a theoretical background on word pronunciation, we introduce
the linguistic domains most relevant for word-pronunciation, viz. morphology
(introduced in Subsection 2.2.1) and phonology (introduced in Subsection 2.2.2.

A classical linguistic view on natural language is the decomposition into
six linguistic domains as displayed in Figure 2.9. It is believed that in human
natural-language processing as well as in any system performing a natural-
language task (e.g., producing utterances in a dialogue, or converting text
to speech, Allen et al., 1987), all components in Figure 2.9 play a role. This
can be understood when language is seen as a mapping between thoughts to
utterances, and vice versa. In both the generation and analysis of language,
knowledge of how a person speaks or writes is intricately coupled to that
person’s knowledge of the world.

Our focus is on a language process which takes written words as input,
and produces phonemic transcriptions as output. This conversion of spelling
words to phonemic transcriptions is referred to as word pronunciation. In
the process of word pronunciation, phonological processing is strongly in-
terrelated with morphological processing. Word pronunciation is a process
occurring both in the morphological and in the phonological domain. Ex-
pressing this strong relationship between the two domains with respect to
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word pronunciation, we refer to the combination of both domains with the
term morpho-phonology.

2.2.1 Morphology

Morphology is the language-specific (or speaker-specific) knowledge about
the internal structure of words: it describes the building blocks, or morphemes,
of which words are made up (cf. Matthews, 1974; Bauer, 1988). Although in
general we may state that morphological structure of words conveys inform-
ation (Sproat, 1992), large differences exist between languages in the kind of
information it encodes. Extremes are on the one hand isolating languages
in which almost no words contain more than one morpheme, such as Man-
darin Chinese, and on the other hand agglutinating languages in which single
words can contain long sequences of morphemes carrying both syntactic and
semantic knowledge, such as Turkish and Finnish (Bloomfield, 1933), and
incorporating languages, such as Inuktitut (an Inuit language), in which sen-
tences contain only one word which is made up of strings of morphemes.

Two types of morphemes are generally distinguished: free morphemes
and bound morphemes. First, free morphemes can occur in isolation. Con-
sequently, in ideal isolated languages all morphemes are free. In English,
examples of free morphemes are dog, safe, and walk. Second, bound mor-
phemes must be attached to other morphemes and cannot occur in isolation.
Examples of bound morphemes in English are al at the end of magical, re at
the beginning of restart, and s at the end of dogs.

There are two ways in which morphemes can attach. First, derivation, or
word formation (Sproat, 1992), is the kind of attachment which takes as input
a word (which may already be morphologically complex) and a derivational
morpheme (which can be free or bound), and produces as output a different
word derived from the original word. Second, inflection is the kind of attach-
ment which takes as input a word and an inflectional morpheme (which is
always bound), and produces as output the same word, in a form appropriate
to the particular context. An important difference between derivation and
inflection that follows from these definitions is that in English, derivation
can lead to the formation of a word of a different syntactic word class (e.g.,
grammatical is an adjective; attaching the derivational morpheme ity leads to
grammaticality, which is a noun). As a rule, inflection never leads to a word
of a different syntactic word class (attaching s to the verb read, gives reads,
which is still a verb).
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As we are focusing on English word pronunciation, a closer look at the
particular complexity of English morphology is appropriate (cf. Bauer, 1983).
First, English has a rather productive morphology, in the sense that morpho-
logically complex words such as antidisestablishmentarianism can be formed
fairly freely. Finding all morphemes in a word thus involves knowing all
morphemes in English, and being able to disambiguate between different
possible segmentations (e.g., booking is most probably composed of the mor-
phemes book and ing, and not of boo and king). English morphology is not
as productive as Dutch or German morphology, however, because derivation
by attaching two or more free morphemes (i.e., compounding as in football,
lighthouse, handwriting) occurs relatively infrequently (Sproat, 1992): the
productivity of English morphology is mostly limited to the attachment of
bound morphemes and inflections to words; moreover, the number of bound
morphemes and inflections in English is limited.

Second, the attachment of morphemes in English often leads to spelling
changes of either one of the morphemes, which makes recognition of these
morphemes in a word more difficult. Four types of spelling changes occur:
(i) etymological spelling changes caused by co-articulatory effects in the pro-
nunciation of a word (e.g., impossible is composed of in and possible; the n
changed into m because the n is pronounced /m/ when preceding a /p/); (ii)
the replacement of letters by other letter groups (e.g., the y in ty is replaced by
ie with plural inflection: entity plus s becomes entities); (iii) the insertion of
letters (e.g., an e is inserted in the plural inflection of church plus s, causing
churches), and (iv) the deletion of letters (e.g., an e is deleted in the past tense
inflection of love plus ed, causing loved).

Third, English has a fairly regular system of morphotactics, i.e., the con-
straints governing the order of morphemes in a word. Sproat (1992) presents
the example of motorizability, which is the only order in which the four mor-
phemes motor, ize, able and ity can occur: itymotorizable, izemotorability,
motorableizity, and motorabilityize are examples or orderings that will never
occur in English.

Most of English morphotactics can be represented by finite-state automata
(FSAs) (Koskenniemi, 1984; Sproat, 1992). Given these morphotactics and
given lexical knowledge of all morphemes in English, a good deal of English
words can be morphologically analysed, and morpheme boundaries can be
found within words. However, an additional mechanism is needed recognis-
ing possible spelling changes near morpheme boundaries. It has been argued
(Koskenniemi, 1984) that in order to recognise such spelling changes, two-level
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finite-state transducers (FSTs) are needed. An FST operates on two representa-
tions, stored on tapes, of the word to be analysed, rather than one. One tape
is called the surface tape, storing the representation of the word as it actually
appears, e.g., churches. The second tape is called the lexical tape, containing
the deep structure of the word, i.e., a concatenation of the morphemes it is
composed of, e.g., church � s. Reacting to the claim that relatively complex
FSTs are mandatory for morphological analysis, Sproat (1992) calls for future
work on models less dominated by multiple-level finite-state morphotactics,
as their complexity is unfavourable, unless parallel machines could be used
(Koskenniemi and Church, 1988). Our investigations of learning morpholog-
ical segmentation focus on single-level processing, which is finite-state but
does not have, in principle, the computational disadvantages as multi-level
finite-state morphotactics.

2.2.2 Phonology

The phonology of a language is the collection of knowledge of the sound
patterns occurring in spoken language, be it speaker-specific (De Saussure’s
(1916) parole), language-specific (De Saussure’s (1916) langue), or language-
universal (Kenstowicz, 1993; Goldsmith, 1996). There is no single theory of
phonology; it is studied in linguistics (Chomsky and Halle, 1968; Kenstow-
icz, 1993; Mohanan, 1986; Goldsmith, 1996) and in psycholinguistics (Lev-
elt, 1989). In linguistics, one influential area of the study of phonology has
adopted the Chomskyan approach to language, transferred to phonology in
the form of generative phonology (Kenstowicz, 1993). Lexical phonology (Mo-
hanan, 1986; Kenstowicz, 1993) is an extension of generative phonology in
which the interaction between phonology and morphology is explicitly mod-
elled. Inherent, undesired complexity of certain assumptions in generative
phonology led to the development of two theories of non-linear phonological
processing: autosegmental phonology or two-level phonology (Goldsmith,
1976; Bird, 1996) and metrical phonology (Liberman and Prince, 1977). In
autosegmental phonology, the single phonemic representation is expanded
by introducing a second autosegmental level, in which certain abstractions
over the phonemic representation can be represented and manipulated inde-
pendent of the phonemic representation. In metrical phonology, tree struc-
tures or grids are used to represent hierarchical structures on top of the one-
dimensional phonemic representations. In psycholinguistics, many pluriform
models of phonology and phonology-related phenomena such as reading
aloud have been proposed (e.g., Coltheart, 1978; Glushko, 1979; Levelt, 1989),
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displaying a lack of consensus in the psycholinguistic field on a single model
of phonology and its role in generating and understanding utterances.

From the multitude of phonological theories, it follows that developers of
word-pronunciation systems cannot adopt a single theory straightforwardly,
and have to choose between alternatives. Practice shows that implemented
word-pronunciation systems often combine fragments of morphological and
phonological theories for building components of the system, augmented
with heuristics, preprocessing, and postprocessing procedures (Allen et al.,
1987). When a fragment of a theory describes an isolated phenomenon, this
fragment or subtheory can be said to describe a phonological abstraction level.
If defined precisely enough, the abstraction level can be implemented as an
isolated component of the word-pronunciation system. Such components are
usually referred to as modules (a classic example of such a modular system is
the MITALK system. Allen et al., 1987). Thus, from the viewpoint of building
word-pronunciation systems, the issue with respect to phonological theory is
which phonological abstraction levels may provide good bases for building
modules. In lexical phonology, explicit proposals are made for abstraction
levels between underived phonological words (entries in a lexicon) and ac-
tual phonological transcriptions of words (Kenstowicz, 1993), but none of
these levels refers to spelling – in general, phonological theory does not con-
cern itself with the level of spelling. Rather, spelling is referred to the study
of graphematics (i.e., the study of writing systems, Venezky, 1970; Sampson,
1984; Coulmas, 1989; Röhr, 1994). Alternatively, in psycholinguistic mod-
els, abstraction levels are assumed in order to account for empirical findings
(e.g., statistical features of text, speech, and speech errors, cf. Levelt, 1989,
or word naming reaction times, cf. Coltheart, 1978; Jared, McRae, and Sei-
denberg, 1990; Plaut, McClelland, Seidenberg, and Patterson, 1996). Rather
than making a comprehensive inventory of abstraction levels assumed in
various theories, we restrict ourselves to describing the following four levels
which can be found commonly in word-pronunciation systems (Hunnicutt,
1980; Allen et al., 1987; Daelemans, 1988; Daelemans, 1987; Coker et al., 1990):

(i) the graphemic level, in which words are represented as strings of graphemes;

(ii) the phonemic level, in which words are represented as strings of phonemes;

(iii) the syllabic level, in which words are represented as strings of syllables;
and
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k n gb o o i letter level

ingbook morphemic level

b oo k i ng graphemic level

b k Iu N phonemic level

bu kIN syllabic level

kIN’bu stress level

Figure 2.10: Illustration of the letter level, the morphological level, and the
four phonological levels, using the example word booking. At
each level, the word is represented as a string of elements spe-
cific for the level.

(iv) the stress level, in which words are represented as strings of stressed
syllables.

In sum, we will henceforth assume the following six levels: the letter level
(which is given and does not have to be analysed, unless of course by optical
character recognition), the morphemic level described in Subsection 2.2.1,
and the four phonological levels. We will employ these six levels as levels of
abstraction in the word-pronunciation systems described in Chapters 3 to 6.
Figure 2.10 illustrates all levels, using the example word booking to illustrate
which elements are used in each level to represent the word.

The graphemic level

On the graphemic level, a word is represented as a string of graphemes. A
grapheme is a letter or letter group realised in pronunciation as one phoneme.
The graphemic and phonemic levels are therefore strongly related. The task
of finding the graphemes in a word is referred to as graphemic parsing (Van
den Bosch et al., 1995). In English, graphemes can contain up to four letters,
e.g., ough in through. The example word booking, as displayed in Figure 2.10,
contains five graphemes: b, oo, k, i, and ng. The grapheme is not directly
covered by any phonological theory; rather, it is proposed as a language
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element in studies of writing systems (e.g., Röhr, 1994) and graphematics
(Venezky, 1970), and as an element at the abstraction level between letters and
phonemes in word-pronunciation systems (Allen et al., 1987). Wolters (1997)
argues that the underrated role of the grapheme in phonological theories can
be attributed to the primacy of the phoneme as the main element of utterances,
as advocated by De Saussure (1916).

There are no straightforward, unambiguous (one-to-one) mappings be-
tween letters and phonemes in English (nor are there in, e.g., Dutch or French,
Van den Bosch et al., 1995); rather, the relations are generally many-to-many
(Venezky, 1970). This is in contrast with the straightforward writing systems
of, e.g., Czech and Serbo-Croatian, in which relations between letters and
phonemes are for the major part one-to-one: such writing systems are termed
shallow orthographies (Katz and Frost, 1992). In English, however, which has
a deep orthography (Katz and Frost, 1992), one grapheme can be associated to
many phonemes (e.g., ea can be pronounced as /i/, /� /, / � � /, and /ı � /),
and (ii) several graphemes can be associated to the same phoneme (e.g., f, ff,
ph, and gh can all map to /f/). Virtually all of these mappings are context-
dependent, and sometimes occur only once (e.g., the phonemic mapping of gh
is /p/ only in the word hiccough, which is usually spelled hiccup nowadays).

Apart from its strong relation to the phonemic level, the graphemic level
is related to the morphological level as well, in the sense that graphemic
parsing needs information from the morphological level in order to operate
correctly. For example, one needs to know that a morpheme boundary occurs
between the p and h of loophole, to prevent the incorrect parsing of the
two-letter grapheme ph rather than the correct parsing of the two single-letter
graphemes p and h. Morphology thus obfuscates the equivalence in similarity
at the levels of writing and pronunciation in English: it is an important cause
for

� � ���
rather than

� � �
�
(cf. Section 1.2). Two other causes for

� � �
rather than

� � � �
are the different paces of change in pronunciation and

in spelling, and the incorporation of strange spellings by loaning words and
their pronunciations from other languages (Röhr, 1994; Coulmas, 1989).

The phonemic level

On the phonemic level, words are represented as strings of phonemes.
Phonemes are abstract mental representations of phones (Kenstowicz, 1993).
Phones are sound patterns in speech, uniquely characterised by articulatory
feature settings determining the physics of the vocal organs during pronun-
ciations of the phones (Clements and Hume, 1995). For example, the phone
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[p] can be uniquely characterised by the presence of the articulatory features
labial (i.e., involving the touching of both lips), stop (i.e., involving a tempo-
rary halt of the air flow through the mouth, followed by a plosive release of
the air), and unvoiced (i.e., pronounced without the vocal folds vibrating). No
other phone is characterised by these articulatory features.

While phones are physically grounded, phonemes are abstract mental
representations of phones (Kenstowicz, 1993). An example in English of a
phoneme is the phoneme /t/. Although /t/ may be realised as different
phones, as in stem, ten, atom, bottle, or pants, it is generally perceived as the
same sound /t/. A distinguishing attribute of phonemes, not possessed by
phones, is that when replacing one phoneme in a word by another phoneme
that may differ in only one articulatory feature, the word may become another
word. For example, changing the /p/ in /pæt/ (pat) to /b/ renders /bæt/,
which is the phonemic transcription of a different word, bat.

The example word booking is represented at the phonemic level by five
phonemes, each corresponding to each of the five graphemes in booking (in
brackets): /b/ (b), /u/ (oo), /k/ (k), /ı/ (i), and / � / (ng).

The cooccurrence of phonemes in English words is regulated by the phono-
tactics of English (Chomsky and Halle, 1968; Goldsmith, 1995). These phono-
tactics cannot be described on the phonemic level, since an additional element
is needed to describe them according to present-day mainstream phonological
theories, viz. the syllable (Kenstowicz, 1993).

The syllabic level

The role of the syllable in phonology has been controversial in phonological
theory (Kenstowicz, 1993). Chomskian phonology, described in SPE (Chomsky
and Halle, 1968), did not consider the syllabic level at all. On the syllabic level,
a word is represented as a string of syllables. The syllable is in its turn a string
of one or more phonemes. A syllable consists of three parts: (i) an onset
consisting of zero to three consonants, (ii) a nucleus consisting of a monophtong
(single vowel) or diphtong (double vowels such as / � � / as in poor), and (iii) a
coda again consisting of zero to three consonants (Selkirk, 1984; Blevins, 1995).

Within the context of the syllable, the phonotactics of English strongly
constrain the phonemes that can occur as neighbours. For example, the
onset /rt/ is impossible in English; /tr/ is perfectly acceptable (as in track);
alternatively, /tr/ cannot occur as a coda, whereas /rt/ does occur in English
(as in art). These particular phonotactical constraints within the syllable
are referred to as the sonority sequencing principle (Selkirk, 1984; Blevins, 1995).
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Syllable boundaries in polysyllabic words are determined by the maximal onset
principle (MOP) (Treiman and Zukowski, 1990), which states that between two
nuclei, as many consonants belong to the second phoneme (seen from left
to right) as can be pronounced together. For example, /bukı � / (booking) is
syllabified as /bu-kı � /; /� ntrı/ (entry) is syllabified as /� n-trı/, since /tr/ is
a well-formed onset, but not /ntr/.

The stress level

On the stress level, a word is represented as a string of syllables with stress
markers. Stress markers denote the realisation of a certain prominence of
one of the syllables in a word. All words have one primary stress position;
polysyllabic and polymorphemic words sometimes have a less prominent,
secondary stress position (e.g., as in the pronunciation of energetically, /� -
n � - � � -tı-k � -lı/, in which the third syllable / � � / receives primary stress, and
the first syllable /� / receives secondary stress). For an detailed overview of
language-universal phonological theories on word stress, cf. Kager (1995).

In English, the placement of word stress is highly irregular. There is a weak
tendency for content words (i.e., nouns, adjectives, verbs) to have primary
stress on the first syllable (as is the case for the example word booking, which
receives primary stress on the first syllable) (Cutler and Norris, 1988). Word
stress is furthermore strongly related to the morphological structure of words:
consider, for example, the difference in word stress in photograph and photo-
graphy, caused by the attachment of the stress-affecting bound morpheme y;
the difference in stress of ball in ballroom and football; the difference in stress
of anti in antipathy and antipathetic. It suffices here to state that determining
the place of primary and secondary stress in polysyllabic English words is
hard; in polymorphemic English words, it is also mandatory to know the
morphological structure (Chomsky and Halle, 1968; Allen et al., 1987).

2.3 Word-pronunciation data acquisition

The set-up of our study demands that we acquire instances of the word-
pronunciation task in order to perform experiments with the selected learning
algorithms (cf. the third requirement formulated in Section 2.1). We describe
the acquisition of word-pronunciation instances in Subsection 2.3.

The resource of word-pronunciation instances used in our experiments is
the CELEX lexical data base of English (Van der Wouden, 1990; Burnage, 1990)
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information type field # CELEX code contents
orthography 1 WordSylDia Hyphenated orthographical

representation of the word
phonology 2 PhonStrsDISC Syllabified phonemic tran-

scription with stress markers
morphology 3 FlectType Type of inflection

4 TransInfl Transformations caused by
inflection

5 MorphStatus Morphological status
6 MorphCnt Number of derivational

analyses
7 StrucLabLemma Hierarchical, bracketed, la-

belled derivational analyses

Table 2.2: The seven information fields extracted from CELEX.

(used earlier with the kn task, cf. Subsection 2.1.1). All items in the CELEX

data bases contain hyphenated spelling, syllabified and stressed phonemic
transcriptions, and detailed morphological analyses. We extracted from the
English data base of CELEX this information, restricting the abundance of
analyses and numbers provided by CELEX to the seven information fields and
values displayed in Table 2.2. The resulting data base contains 77,565 items.
Table 2.3 provides some randomly selected examples of items contained in
our English data base. The numbers in the columns of Table 2.3 correspond
to the numbers of the information fields listed in Table 2.2.

Spelling words and their phonemic counterparts are composed of 42 dif-
ferent letters (including letters with diacritics such as é and ö) and 62 different
phonemes, respectively. Appendix A lists both alphabets. Both sets of letters
and phonemes are adapted from the ones used in CELEX, with two minor addi-
tions directly related to our experimental set-up: (i) the space before and after
a word is also counted as a member of the letter alphabet, and is denoted by

(cf. Subsection 2.1.1), and (ii) eight double phonemes represented by single
characters are added to the phonemic alphabet to ensure that no phonemic
transcription contains more phonemes than its spelling counterpart contains
letters (cf. Sections 3.2 and 3.3).

All items in the 77,565-word data base are unique; most items, however,
share some information fields with other similar items. For example, verb
inflections derived from the same verb stem share the same derivational
analysis. In Chapter 3, in which isolated morpho-phonological subtasks are
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1 2 3 4 5 6
dark-ness ’d#k-n@s S C 1 �����
king-li-est ’kIN-lI-Ist s @-y+iest C 1 �����
left--wing-ers "lEft-’wI-N@z P @+s C 2 �����
sight ’s2t S M 1 �����
val-i-dat-ing ’v

�
-lI-d1-tIN pe @-e+ing C 1 �����

7
����� ((dark)[A],(ness)[N|A.])[N]
����� ((king)[N],(ly)[A|N.])[A]
����� (((left)[A],(wing)[N])[N],(er)[N|N.])[N]

((left)[A],((wing)[N],(er)[N|N.])[N])[N]
����� (sight)[N]
����� ((valid)[A],(ate)[V|A.])[V]

Table 2.3: Sample items in the English morpho-phonological data base.

investigated, additional descriptions will be given of the specific training and
test sets extracted from the original data base.

It is noteworthy that CELEX includes both American and British spelling,
i.e., it contains, e.g., monolog and monologue, and generalize and generalise.
Hyphenation in CELEX roughly follows the principles of British English, as
opposed to the more liberal hyphenation rules of American English. The
phonemic transcriptions extracted from CELEX are the primary pronunciations
as laid down in the English Pronouncing Dictionary (Jones et al., 1991), which
is aimed at representing the so-called ‘Received Pronunciation’ of British
English.

The information contained in CELEX can only to a certain extent be seen
as raw material. A large amount of linguistic assumptions underly the rep-
resentations in CELEX, notably the morphological representations. We should
therefore be aware of the fact that directly extracting information from CELEX

implies copying some of the linguistic bias in the CELEX data. When this is the
case, we define the subtask in such a way that this bias is maximally limited,
also when this means limiting the granularity of information provided by
CELEX.
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2.4 Methodology

We compare the generalisation abilities of inductive-learning algorithms ap-
plied to the word-pronunciation task and morpho-phonological subtasks, by
training and testing them on identical training and testing material. We ex-
emplified our approach with a simple example task, the pronunciation of
kn. In this section, we formalise our experimental methodology for inductive
language learning in order to show that the fourth requirement for our inves-
tigation of inductive learning of word pronunciation is met. For each task or
subtask � , we perform the following procedure:

1. From a real-world resource ��� containing instances of � , we extract
an instance data base ��� . ��� contains as many instances as can be
sampled from ��� .

2. We train (a subset of) the learning algorithms on a subset of ��� , the
training set ���	��


	
�

� , resulting in induced systems for performing � . All
algorithms are trained on the same material.

3. We perform a fixed number of experiments by which we estimate for
each induced system its generalisation error, i.e., the percentage error
of incorrectly processed test instances. This is done by presenting all
systems with an identical set of instances, the subset of ��� that is the
complement of ���
��


	
�

� , viz. the test set ���������� .

4. We compare the generalisation errors of all induced systems and analyse
their differences with statistical significance tests.

The extraction of instances from items in CELEX is described in Subsec-
tion 2.4.1. We provide details on how we conduct experiments applying
learning algorithms to training and test sets of (sub)tasks in Subsection 2.4.2.
The parameter settings of the algorithms used throughout the thesis are listed
in in Subsection 2.4.3.

2.4.1 Windowing reformulated

As was illustrated with the kn task, the raw language data has to be formatted
in such a way that the instances presented to the learning algorithms have a
fixed size. A representation of a (sub)task must be determined in which the
input is represented as feature-value vectors of a fixed length � . For example,
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instances of the kn task contained eight feature values (cf. Subsection 2.1.1).
In contrast with the kn task, the (sub)tasks investigated in the subsequent
chapters are not defined as finding correct classifications of a particular letter,
but as finding correct classifications of all letters in a word. Thus, words are
not treated as single instances, but as series of instances. For each word, the
number of instances equals the number of letters in the word. Therefore, the
windowing method is reformulated as follows:

� it generates as many feature-value vectors per word as the number of
letters in the word, by taking each letter separately as the middle letter
in the window; and

� it generates feature-value vectors of length � , viz. three left-context
neighbour letter positions, one focus letter position, and three right-
context neighbour letter positions.

For the remainder of this thesis, the feature-value vector length is fixed to� ��� . The locality assumption, formulated earlier with the kn task, is thus
maintained. The fixed contextual scope is a limitation for certain (sub)tasks,
as it does not include the long-distance scope needed in certain exceptional
cases. We will critically discuss the consequences of fixing the contextual
scope to seven neighbour letter positions in Chapter 7.

Figure 2.11 illustrates the windowing method applied to the example word
booking. At each snapshot, the window captures one of the seven letters of
the word, and includes three left and three right neighbour letters.

2.4.2 Cross-validation and significance testing

When we apply learning algorithms to morpho-phonological (sub)tasks, we
are not primarily concerned with the question whether these learning al-
gorithms can learn and reproduce the training material, since keeping all
training material in memory would suffice in that case. Rather, our analyses
focus on the ability of the learning algorithms to use the knowledge accu-
mulated during learning for the classification of new, unseen instances of the
same (sub)task, i.e., we measure their generalisation accuracy. To this end we
have to establish a sound experimental methodology: techniques are avail-
able which meet this soundness requirement. Weiss and Kulikowski (1991)
describe � -fold cross validation ( � -fold CV) as a procedure of three steps. (i) On
the basis of a data set, � partitionings are generated of the data set into one
training set containing 
 
 � � � 
�� � 
 th of the data set, and one test set containing
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1

2

3

4

5

6

7

b o o k

b o o k i

b o o k i n

b o o k i n g

o o k i n g

o k i n g

k i n g

number
instance

window

Figure 2.11: Example of the windowing method applied to the word book-
ing. The fixed-size window (large rectangular box) captures a
focus letter (small middle box) surrounded by three left and
three right neighbour letters.


 � � � 
 th of the data set, per partitioning. (ii) For each � th partitioning, a learn-
ing algorithm is applied to the training set, and the generalisation error

�
is

collected by applying the learned model to the test set. (iii) A mean generalis-
ation error of the learned model is computed by averaging the generalisation
errors found during the � experiments. Weiss and Kulikowski (1991) argue
that by using � -fold CV, preferably with � � � � , one can retrieve a good esti-
mate of the true generalisation error of a learning algorithm given an instance
data base.

To make claims with respect to the relation of the � outcomes of an � -
fold CV experiment to other experimental outcomes (e.g., of other learning
algorithms applied to the same data set using an � -fold CV set-up), statistical
analyses are available on the basis of which one can claim that, e.g., the
generalisation accuracy of a learning algorithm is significantly better than that
of another algorithm. All experiments reported in this thesis use a 10-fold
CV set-up, combined with one-tailed � -tests (Hays, 1988). Given two 10-fold
CV generalisation accuracies of two algorithms � and � , the probability that
the generalisation accuracy of � is indeed better than that of � is 0.95 if and
only if a one-tailed � -test returns a � -value ��� � � ��� . When we report on

�
Henceforth, we also refer to generalisation error, being the reverse of generalisation accuracy;

low generalisation error is high generalisation accuracy.
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significances, we provide both the � -value (Hays, 1988) and the range of the
� -value: � � � ����� (i.e., the difference is not significant), � � � � ��� , � � � � � � , or
� � � ��� � � (i.e., the difference is significant).

From Chapter 3 onwards, specific applications of learning algorithms
to morpho-phonological (sub)tasks are sometimes analysed with additional
methods related to the task at hand; these methods are introduced in the
appropriate (sub)sections.

Salzberg (1995) provides a thorough critique on common practice in
machine-learning research concerning the comparison of algorithms under
certain experimental conditions. He distinguishes between comparisons
of learning algorithms applied to benchmark tasks (e.g., contained in the
PROBEN1 (Prechelt, 1994) or UCI (Murphy and Aha, 1995) benchmark collec-
tions), and comparisons of learning algorithms applied to real-world tasks.
Our work belongs to the second type. Salzberg argues that for real-world
tasks, straightforward comparisons of algorithmic generalisation accuracies
(i.e., comparisons of the outcomes of two 10-fold CV experiments using one-
tailed t-tests) may suffice, but any conclusions from such comparisons will be
limited to the domain under investigation.

Apart from running 10-fold CV experiments to be able to compare accu-
racies of different algorithms, we also compute a baseline accuracy with each
subtask under investigation. We introduce DC, which optionally stands for
Default Classifier or Dumb Classifier. DC is basically an instance-based learning
algorithm in which the learning component is identical to that of IB1 and IB1-
IG, i.e., plain storage of all training instances in an instance base, and in which
the classification component performs the following two simple ordered rules:
given a test instance

�
,

1. match
�

against all stored instances in the instance base; as soon as
an identical memory instance � is found (i.e., all feature values of

�
and � are equal), produce the (most frequently occurring) classification
associated with � as the classification of

�
;

2. if no identical instance to
�

exists in the instance base, produce the
most frequently occurring classification in the whole instance base as
the classification of

�
.

The combination of measuring the overlap between training and test sets
(rule 1) and employing the class bias in the training set (rule 2) as a fall-back
option, is taken here as the baseline score reported with the experiments in
this thesis. With linguistic tasks, such as the kn task investigated in Sec-
tion 2.1, using the overlap and bias can provide relatively accurate guesses.
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For example, 126 instances in the kn data base occur more than once, e.g., the
knigh instance occurs eleven times (this is because the windowing method

produces parts of words that are identical, while the words themselves are all
unique). When one of these eleven knigh instances is in the instance base,
and the remaining ten instances are in the test set, these instances can all be
classified correctly by DC because of the single memorised instance. As for the
bias of the training material, we noted that 82.8% of all cases mapped to class
/-/, which makes it a good guess for new, unseen instances (cf. Yvon, 1996
for similar findings). In the two-dimensional space defined by the learning
effort and classification effort dimensions, visualised in Figure 2.1, DC can be
placed in the lower-left corner.

2.4.3 Parameter setting

To optimise comparability of our experiments, we do not determine a new set
of parameter settings for each application of a learning algorithm. Instead,
we determine beforehand a number of default parameter settings for each al-
gorithm which are kept constant throughout all experiments. Salzberg (1995)
expresses some concerns on setting parameters. He argues that when using
the same data for training and testing, any parameter adjustment during any
experiment heavily decreases the significance levels that should be obtained
to reach significant differences (Salzberg, 1995). He explicitly states that any
parameter tweaking should be performed before test material is used by the
experimenter. Following Salzberg’s (1995) suggestion, we have adjusted the
parameters of the five algorithms only once before the introduction of test
material in the experiments.

The parameter settings of the learning algorithms used in our experiments
are displayed in Table 2.4. For IB1, IB1-IG, and IGTREE, these parameter settings
are known from past research (Daelemans and Van den Bosch, 1992a; Daele-
mans et al., 1997a) to be typical or default for the specific algorithm. To
determine the learning rate, the momentum, and the number of hidden units
for BP, we performed a limited number of pilot experiments on a data set rep-
resenting the task of English word hyphenation (Van den Bosch et al., 1995)
monitoring the error on training material under different parameter settings,
and selecting the parameter settings that led to the highest accuracy on the
classification of training material.

It can be expected that the fixed settings in Table 2.4 are not optimal
for every experiment performed. Any possible disadvantage from fixing
parameters at non-optimal settings apply especially to BP (seven parameters)
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algorithm parameter setting
BP learning rate 0.1
(Rumelhart et al., 1986) momentum 0.4

# hidden layers 1
# hidden units 50
update tolerance 0.2
patience threshold 0.025%
halting patience 2

IB1 similarity matching 1-nn
(Aha et al., 1991)
IB1-IG similarity matching 1-nn
(Daelemans et al., 1997a) feature weighting information gain
IGTREE feature ordering information gain
(Daelemans et al., 1997a)
C4.5 feature ordering gain ratio
(Quinlan, 1993) number of trees built 1

subtree pruning no
feature-value grouping yes

Table 2.4: Fixed parameter settings of learning algorithms.

and to C4.5 (four parameters); the other three algorithms function under one
or two parameters. Although we acknowledge the potential disadvantage for
fixing parameter settings, especially for the algorithms with many parameters,
BP and C4.5, our purpose here is to compare a set of learning algorithms under
identical experimental conditions (i.e., using 10-fold CV and fixed parameters)
applied to a set of morpho-phonological (sub)tasks, instead of minimising
the generalisation error of any specific algorithms applied to any specific
(sub)tasks.



Chapter 3

Learning word-pronunciation
subtasks

In Section 2.2 we described six levels of abstraction assumed by developers
of mainstream word-pronunciation systems. The assumption is, inspired by
theories of morphology and phonology, that performing word pronunciation
implies performing a stepwise transcription from the level of letters to the level
of stressed phonemes by performing the subtasks in sequence. Leaving aside
the level of letters, which is the input to word pronunciation that is given and
does not need to be computed, brief analyses of the remaining five abstraction
levels (viz. the morphological, graphemic, phonemic, syllabic, and stress
levels) indicated that each level represents a complex subtask in itself. It is
therefore a relevant question whether the selected algorithms can learn these
word-pronunciation subtasks and attain adequate generalisation accuracy. If
one adopts the mainstream-linguistic argument that the abstraction levels
are necessary, low generalisation accuracies on any of the subtasks would
reveal limitations of inductive learning that probably would also apply to
learning the word-pronunciation task as a whole. Alternatively, a successful
learning of all subtasks with high generalisation accuracies would indicate
that successful inductive learning of the word-pronunciation task might be
possible.

In this chapter we investigate in isolation the application of the five
inductive-learning algorithms to each of five subtasks related to the five ab-
straction levels. We have argued earlier (cf. Section 2.2.2, page 46) that these
five abstraction levels are relatively common in morphological and phono-
logical theories (Kenstowicz, 1993; Levelt, 1989; Goldsmith, 1996); they also

59
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occur implemented in modules in existing text-to-speech synthesis systems
(e.g., Allen et al., 1987; Daelemans, 1988; Coker et al., 1990). The five subtasks
investigated in this chapter are employed in the subsequent chapters, from
Chapter 4 on, as components in word-pronunciation systems.

Our approach to this investigation is basically analogous to the treatment
of the kn task in Section 2.1. The five subtasks are the following (between
brackets we mention the section in which the application of learning algo-
rithms to the subtask is reported):

1. morphological segmentation (Section 3.1),
2. graphemic parsing (Section 3.2),
3. grapheme-phoneme conversion (Section 3.3),
4. syllabification (Section 3.4), and
5. stress assignment (Section 3.5).

Subtask 1, morphological segmentation, is to detect morpheme bound-
aries within words (cf. Subsection 2.2.1). Subtasks 2, 3, 4, and 5 have as output
the four elements described in Subsection 2.2.2, viz. graphemes, phonemes,
syllables, and stress markers. Subtask 2, graphemic parsing, is the detection
of graphemes in spelling words. Subtask 3 is the conversion of graphemes
to phonemes. Subtask 4, syllabification, is the detection of syllable bound-
aries in phonemic transcriptions. Finally, subtask 5, stress assignment, is the
placement of stress markers on phonemic transcriptions.

The five subtasks are investigated in isolation, viz. they are defined ac-
cording to the following three rules:

(i) For each subtask we create the instances directly from our English data
base (as with the kn task, cf. Subsection 2.1.1).

(ii) In the case of subtasks 1, 2, and 3, the feature values represent letters, and
in the case of subtasks 4 and 5, the feature values represent phonemes.
No other information (e.g., morpheme boundary markers, graphemic
parsings, syllable boundary markers, or stress markers) is included in
the instance features.

(iii) The possible classifications are strictly the classifications of the sub-
task itself. For example, the possible classifications of the grapheme-
phoneme-conversion subtask are phonemes, without additional classes
such as stress markers or syllable boundaries.

After the presentation of the experimental results with the five subtasks
in Sections 3.1 to 3.5, the results are summarised and evaluated in Section 3.6.
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instance left focus right
number context letter context classification

1 b o o k 1
2 b o o k i 0
3 b o o k i n 0
4 b o o k i n g 0
5 o o k i n g 1
6 o k i n g 0
7 k i n g 0

Table 3.1: Instances with morphological segmentation classifications de-
rived from the word book

�
ing. Denotation of the classification

labels is as follows: � � no morpheme boundary; � � morpheme
boundary.

3.1 Morphological segmentation

As described in Subsection 2.2.1, the subtask of morphological segmentation
is deemed essential as the task that should be performed first in a word-
pronunciation system, since knowledge about morpheme boundaries is rel-
evant at other abstraction levels. Rather than implementing the knowledge
generally assumed necessary (viz. knowledge of all morphemes occurring in
English, of spelling changes at morpheme boundaries, and of the morphotac-
tics of English, cf. Subsection 2.2.1), we present the subtask of morphological
segmentation to the learning algorithms as a one-step classification task. This
means that we convert a word into fixed-sized instances of which the focus
letter is mapped to a class denoting a morpheme boundary decision. Ap-
plying the windowing method to the example word book

�
ing leads to the

instances displayed in Table 3.1.

Morphological segmentation: Experiments

An instance base is constructed containing 675,745 instances, derived from
the 77,565-word base (cf. Subsection 2.3). A problem with obtaining the
morphological classifications is that CELEX does not provide complete inform-
ation on the morphology of words. For about 10,000 words in the standard
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77,565 data base, CELEX does not provide a morphological analysis, as these
words fall in either of the following CELEX categories: (i) irrelevant, as in the
onomatopoetic meow, or gosh; (ii) obscure, as in tabby which appears to stem
from tab, but probably does not; (iii) including a non-English root, e.g., impri-
matur and patrimony; and (iv) undetermined, mostly used for loan words such
as hinterland and virtuoso. These unanalysed words may cause the learning
algorithms ambiguity problems both during learning, when word pairs such
as cab

�
by and tabby (unanalysed), or farm

�
land and hinterland (unanalysed)

present counter-examples to each other, as well as during testing, when one
of such a critical word pair is in the training set, and the other word is in
the test set. We chose to include the unanalysed words in the data set to
ensure comparability in data set size with the other subtasks investigated in
this chapter. Lacking the morphological analyses for these words, derived
instances are all associated with class 0.

The five learning algorithms BP, IB1, IB1-IG, IGTREE, and C4.5 are applied
to the morphological-segmentation subtask. All algorithms are run using
the default settings of Table 2.4. Figure 3.1 displays the generalisation errors
obtained with these five algorithms in the bar graph displayed on the right.
The left part of the figure displays a results summary, giving details on (i)
the best-performing algorithm, (ii) the percentage of incorrectly-classified
test instances by the best algorithm, and (iii) the percentage of incorrectly
produced test words by the best algorithm. Below this results summary, the
figure also lists the percentage of errors on test instances (i) when the overlap
between test set and training set is taken as the only source of classification,
and (ii) when the class bias (i.e., guessing the most-frequently occurring class
in the data set) is taken as the source of classification. The generalisation
accuracy of DC, displayed in terms of generalisation errors as the leftmost bar
in the right part of Figure 3.1, is the combination of classification methods (i)
and (ii) (cf. Subsection 2.4.2, p. 56). On top of each bar in the bar graph, an
error bar displays the standard deviation (Hays, 1988) of the average value the
bar represents. The value represented by each bar is also printed immediately
above the respective bar.

IB1-IG performs significantly better than all other algorithms (the smallest
difference is with IB1: � 
 � ��

��� � � � � � � � ��� � � ). The difference in the accuracies
of IB1 and IGTREE is not significant; all other differences are significant with
� � � � � � � . Thus, instance-based learning in IB1-IG appears most suited for
learning morphological segmentation. While the generalisation accuracy of
IB1 is matched by the decision-tree learning algorithm IGTREE, the use of the
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RESULTS SUMMARY

best algorithm IB1-IG
gen. error (%) 4.78
gen. error, words (%) 29.34

OVERLAP AND BIAS

overlap error (%) 21.31
class bias error (%) 24.56
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Figure 3.1: Results on the morphological-segmentation subtask. Results
summary, bias, and overlap errors (left), and generalisation er-
rors in terms of the percentage of incorrectly classified test in-
stances of five algorithms (right).

information-gain-weighting function in IB1-IG is the decisive advantage in
attaining the best accuracy.

The baseline accuracy score of DC (cf. Section 2.4, page 56) is quite close to
the accuracies of the other algorithms. This can be explained by the fact that
morphological boundaries are regularly located at word endings and begin-
nings, at which highly frequent suffixes such as -ment and -ness, and prefixes
such as pre- and un- occur. Consequently, the instance base will contain many
duplicates of letter windows capturing these frequent morphemes. As DC

obtains its accuracy partly from the overlap between training and test sets,
it benefits from these duplicates. On average, 82.8 % of the test instances
overlap with training instances; of these overlapping instances, 96.2 % have
a matching classification (the 3.8% defective cases are ambiguous instances,
with identical feature values yet with different classifications). Thus, the rel-
ative success of DC reflects the fact that morphological segmentation benefits
from storing instances in memory without abstraction by forgetting inform-
ation (as in BP and the decision-tree algorithms). The generalisation accuracies
of IB1 and IB1-IG of course corroborate this conclusion.
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3.2 Graphemic parsing

The subtask of graphemic parsing can be paraphrased as ‘identifying the
letters or letter groups in a spelling word that map to a single phoneme in
pronunciation’. The raison d’être of graphemic parsing as a discernible subtask
within morpho-phonology is that before a phonemic transcription can be gen-
erated on the basis of a spelling word, the relations between graphemes (i.e.,
letters or letter groups) and phonemes have to be determined. This subtask
is not trivial: it is a well-known fact of the English writing system that it has
many multi-letter combinations, i.e., graphemes, realised in pronunciation as
single phonemes (cf. Subsection 2.2.2).

CELEX does not contain information regarding the relation of letters and
phonemes within words. Although CELEX contains the information that, for
example, booking is pronounced /bukı � /, it does not explicitly indicate the
mapping between oo and /u/, or ng and / � /. Consequently, a data set of
graphemic parsing has to be compiled beforehand. One option to do this is
to implement a rule system containing a limited number of context-sensitive
rules describing the graphotactics (i.e., the rules and exceptions determining the
possible orderings and co-occurrences of letters into graphemes) of English.
However, we aim to minimise the inclusion of language-specific knowledge
in both input and output of our tasks. This led us to develop a language-
independent, data-oriented method (Daelemans and Van den Bosch, 1997).
The algorithm attempts to make equal the length of a word’s spelling string
to the length of its transcription. Table 3.2 displays two examples of letter-
phoneme alignments of the word booking. The top alignment represents
a naive left-aligned parse that is clearly not optimal, as it maps letters to
phonemes that are in no sensible way related (e.g., o and /k/, or k and /ı/).
The bottom parse, actually produced by our automatic graphemic-parsing
algorithm (Daelemans and Van den Bosch, 1997), presents an alignment that
is at least intuitively correct.

In a first processing stage, the algorithm automatically captures letter-
phoneme associations in an association matrix. Each spelling string is aligned
to the left with its transcription of equal or shorter length. For each letter, the
score of the phoneme that occurs at the same position in the transcription is
incremented; furthermore, if a spelling string is longer than its transcription,
phonemes which precede the letter position are counted as possibly associated
with the target letter as well. In the case of the sample word booking (seven
letters) with the unaligned phonemic transcription /bukı � / (five phonemes),
for each letter, three phonemes receive a score increase: the phonemes that
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bad parsing
b o o k i n g� � � � � � �

b u k ı � - -
reasonable parsing

b o o k i n g� � � � � � �

b u - k ı � -

Table 3.2: Examples of a bad letter-phoneme alignment (top) and a reason-
able letter-phoneme alignment (bottom).

letter no shift shift � 1 shift � 2
b b
o u b
o k u b
k ı k u
i � ı k
n � ı
g �

Table 3.3: All possible associations between letters and phonemes of the
sample word booking and its phonemic transcription /bukı � /,
shifted along the spelling.

are in the same position as the letters in focus, and the phonemes that may be
in the same position when the phonemic transcription is shifted towards the
right-alignment position (for the sample word, 7 � 5 � 2 phonemes). Table 3.3
displays all possible letter-phoneme associations for the sample word booking
(the empty cells in the table indicate word boundaries and do not count as
phonemes)

Although a lot of noise is added to the association matrix by including
associations that are less probable, the use of this association window ensures
that the most probable associated phoneme is always captured in this window.
The score of the phonemes is not increased equally for all positions: in the
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present implementation of the algorithm (Daelemans and Van den Bosch,
1997) the focus phoneme receives a score increase of 8; the phonemes to the
left receive a score increase of 4, 2, and 1 respectively; phonemes situated
further in the string do not receive any score. When all words are processed
this way, the scores in the association matrix are converted into probabilities.

The second part of the alignment algorithm generates for each pair of
unaligned spelling and phoneme strings all possible (combinations of) inser-
tions of null phonemes in the transcription. For each hypothesized string,
a total association probability is computed by multiplying the scores of all
individual letter-phoneme association scores between the letter string and
the hypothesized phonemic string. The hypothesis with the highest total
association probability is then taken as output of the algorithm.

A graphemic parsing of the letter string can be derived straightforwardly
from the automatically-generated letter-phoneme alignments. In the example
of booking, the reasonable alignment of Table 3.2 can simply be translated into
a division of the word into the graphemes b, oo, k, i, and ng, when each letter
mapping to ‘-’ (i.e., the null-phoneme) is concatenated with its left neighbour
letter to form a multi-letter grapheme). The null-phoneme is neither a member
of the phonemic alphabet nor a (psycholinguistically) real element in human
speech. It serves its purpose only in the application described here, and, e.g.,
in NETTALK (Sejnowski and Rosenberg, 1987) � .

For the application of learning algorithms to the subtask of graphemic
parsing, we construct a data set using the windowing method (cf. Subsec-
tion 2.3). Table 3.4 displays an example of the windowing conversion of the
word booking to seven instances, using them graphemic parsing displayed in
Table 3.2 (bottom). The spaces before and after words are represented by ‘ ’
characters. Each instance maps to either class 1, denoting that the focus letter
is the first letter of a grapheme, or to class 0, denoting that the focus letter is
not the first letter of a grapheme.

Graphemic parsing: Experiments

A data base is constructed of 675,745 instances derived from the 77,565-word
base (cf. Subsection 2.3). BP, IB1, IB1-IG, IGTREE, and C4.5, using the default
parameters listed in Table 2.4, are applied to this data base. Figure 3.2 displays
�
Sejnowski and Rosenberg implicitly defend the use of phonemic nulls by assigning them

the phonological feature elide (Sejnowski and Rosenberg, 1987). However, the corresponding
phonological process of elision applies in considerably less cases (cf. Tranel, 1995) than the
phonemic null occurs in the NETTALK data and in our data.
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instance left focus right
number context letter context class

1 b o o k 1
2 b o o k i 1
3 b o o k i n 0
4 b o o k i n g 1
5 o o k i n g 1
6 o k i n g 1
7 k i n g 0

Table 3.4: Example of applying the windowing encoding scheme to the
word booking producing 7 instances that each map to a letter-
phoneme alignment.

the generalisation error results of the algorithms, DC, and the overlap and bias
errors. IB1-IG is found to produce significantly less errors on test instances than
all other algorithms. The algorithm with the generalisation error closest to that
of IB1-IG in terms of significance is BP ( � 
 � ��
 � � � � � � � � � � ��� � � ). IB1, IGTREE,
and BP all perform roughly similarly: only IGTREE produces significantly less
errors than IB1 ( � 
 � ��
 � � � � � � � � � ��� � ). The lazy-learning approach appears
to result in optimal accuracy on the graphemic-parsing task only when it is
combined with information-gain feature weighting in IB1-IG. Surprisingly,
C4.5 performs significantly worse (� � � ��� � � ) than all other algorithms except
DC.

3.3 Grapheme-phoneme conversion

The conversion of graphemes to phonemes is a transcription task rather
than a segmentation task such as morphological segmentation and graphemic
parsing. As described in Subsection 2.2.2, the conversion of graphemes to
phonemes constitutes a many-to-many mapping: a grapheme can map to
many different phonemes, and a phoneme can be the transcription of many
different graphemes.

The subtask of grapheme-phoneme conversion is defined as mapping
a letter in a fixed-width window to either a phoneme or a phonemic null,
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RESULTS SUMMARY

best algorithm IB1-IG
gen. error (%) 1.05
gen. error, words (%) 7.60

OVERLAP AND BIAS

overlap error (%) 17.85
class bias error (%) 18.84
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Figure 3.2: Results on the graphemic-parsing subtask. Results summary,
bias, and overlap errors (left), and generalisation errors in terms
of the percentage of incorrectly classified test instances of five
algorithms (right).

the latter indicating that the letter is not pronounced. This is analogous to
the kn task (cf. Section 2.1.1) in which the letter k either mapped to the
phoneme /k/ or to the phoneme /-/ (the phonemic null). The inclusion
of the phonemic null as possible classification, i.e., as the classification of
letters that are part of a grapheme and are not pronounced, is an indirect way
of encoding graphemic parsing in the grapheme-phoneme conversion task.
By this subtask definition, the algorithms learn to map letters to phonemes,
while also learning when to map letters not in graphemic-initial position
to the phonemic null. Declaring the phonemic null to be a member of the
phonemic alphabet is a solution to meet rule (iii) of the subtask definitions
listed in the first section of this chapter (p. 60). Including the phonemic null,
the grapheme-phoneme conversion subtask is to choose between 42 different
phonemes (classes) when classifying instances.

To generate the instances for the grapheme-phoneme conversion task,
we combine the phonemic transcription provided by CELEX with the output
of the automatic graphemic-parsing algorithm used in the previous section
(Daelemans and Van den Bosch, 1997), thereby designating this output to
be flawless (as it is the only reasonable output available). Each instance
that mapped to 1 in the graphemic-parsing subtask (Section 3.2) is mapped
to its corresponding phoneme here. Each instance that mapped to 0 in the
graphemic-parsing subtask, is mapped to a phonemic null ‘-’. The sample
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instance left focus right
number context letter context class

1 b o o k /b/
2 b o o k i /u/
3 b o o k i n /-/
4 b o o k i n g /k/
5 o o k i n g /ı/
6 o k i n g / � /
7 k i n g /-/

Table 3.5: Example of applying the windowing encoding scheme to the
word booking, transcription /bukı � /, introducing two null-
phonemes placed beforehand by automatic graphemic parsing.

word booking is converted into grapheme-phoneme conversion instances in
Table 3.5.

Grapheme-phoneme conversion: Experiments

An instance base is constructed containing 675,745 instances derived from the
77,565-word base. BP, IB1, IB1-IG, IGTREE, and C4.5 are applied to this instance
base. Figure 3.3 displays the results obtained with the five algorithms, DC,
and the overlap and bias errors. IB1-IG performs best on test instances. All
differences between algorithms are significant with � � � ��� � � , except for the
difference between IGTREE and C4.5 ( � 
 � ��
 � � � � �

� � � � ����� ). Measuring the
accuracy in terms of correctly-processed test words rather than phonemes,
IB1-IG can on the average transcribe flawlessly 79.9% of all test words, which
is very close to high-quality standards demanded by industrial text-to-speech-
synthesis developers, viz. 80%–90% flawless phonemic word transcriptions
(Yvon, 1996). The high generalisation errors made by DC stem from the high
number of classes in the phoneme task (viz. 62): guessing the most frequently
occurring class, /-/, does not provide a good bias as it occurs only in 18.8% of
the instances. The relatively high generalisation errors made by BP are harder
to explain; the fixed number of hidden units (viz. 50) might be too low,
causing difficulties in learning intermediary representations in the network
(which has 294 input units and 62 output units).
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RESULTS SUMMARY

best algorithm IB1-IG
gen. error (%) 3.14
gen. error, words (%) 20.07

OVERLAP AND BIAS

overlap error (%) 19.87
class bias error (%) 81.16
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Figure 3.3: Results on the grapheme-phoneme-conversion subtask. Re-
sults summary, bias, and overlap errors (left), and generalis-
ation errors in terms of the percentage of incorrectly transcribed
phonemes of five algorithms (right).

instance left focus right
number context letter context class

1 /b/ /u/ /k/ /ı/ 0
2 /b/ /u/ /k/ /ı/ / � / 0
3 /b/ /u/ /k/ /ı/ / � / 1
4 /b/ /u/ /k/ /ı/ / � / 0
5 /u/ /k/ /ı/ / � / 0

Table 3.6: Instances derived from the syllabified phonemic string /bu-kı � /.

3.4 Syllabification

The subtask of syllabification is to find the boundaries between syllables
within strings of phonemes. We use the windowing method again to create
fixed-sized instances. Instances map to class 1 when the focus phoneme is the
first phoneme of a syllable, or to a class 0 when the focus phoneme is not the
first phoneme of a syllable, or the first phoneme of the word (which is trivially
at syllable-initial position when the word is pronounced in isolation). Table 3.6
lists the instances derived from the example phonemic string /bukı � /, which
is syllabified as /bu-kı � /.
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RESULTS SUMMARY

best algorithm IB1-IG
gen. error (%) 0.40
gen. error, words (%) 2.22

OVERLAP AND BIAS

overlap error (%) 40.09
class bias error (%) 38.39
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Figure 3.4: Results on the syllabification subtask. Results summary, bias,
and overlap errors (left), and generalisation errors in terms of
the percentage of incorrectly classified test instances of five al-
gorithms (right).

Syllabification: Experiments

We construct an instance base of 548,417 instances � derived from 77,565
phonemic transcriptions. BP, IB1, IB1-IG, IGTREE, and C4.5 are applied to this
instance base. The generalisation error results are displayed in Figure 3.4, as
well as the generalisation accuracy of DC and the overlap and bias errors. All
algorithms, except for the baseline DC, produce only a few classification errors
on test instances. IB1-IG performs significantly better than all other algorithms
(smallest difference is with IGTREE: � 
 � ��
 � � � � � � � � � ��� � � ). Non-significant
differences exist between IB1, BP, and C4.5.

The accuracy with which the syllabification task is learned is in agreement
with the overall regularity of the subtask according to phonological theories:
syllabification is generally assumed to be governed by a few simple principles,
if not only by one, i.e., the maximal onset principle (MOP) (cf. Section 2.2;
Treiman and Zukowski, 1990). It appears that the regularity assumed by the
MOP cannot be exploited by DC, which uses only overlap and bias to guess the
classification of new instances; in contrast, the regularity is captured by each
of the five learning algorithms.

�
The number of instances in the syllabification instance base, 548,417, is smaller than

that in the instance bases of morphological segmentation, graphemic parsing, and grapheme-
phoneme conversion (viz., 675,745), because the phonemic transcriptions, excluding phonemic
nulls, contain less phonemes than their respective words contain letters.
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instance left focus right
number context letter context class

1 /b/ /u/ /k/ /ı/ 1
2 /b/ /u/ /k/ /ı/ / � / 0
3 /b/ /u/ /k/ /ı/ / � / 0
4 /b/ /u/ /k/ /ı/ / � / / / 0
5 /u/ /k/ /ı/ / � / / / 0

Table 3.7: Instances derived from the phonemic string with stress marker
/’bukı � /.

3.5 Stress assignment

In the CELEX data base of English, primary as well as secondary stress markers
are provided as word stress information. These markers (’ for primary stress,
and “ for secondary stress) are placed before the syllable receiving stress.
For example, stress information for the word booking is stored as /’bu-kı � /,
which should be read as “primary stress falls on the first syllable /bu/”. Using
the windowing method, we generate phoneme string instances of which the
focus phoneme maps to to class 1 if the focus phoneme is the first phoneme of
the syllable receiving primary stress; to class 2 if the focus phoneme is the first
phoneme of the syllable receiving secondary stress; and to class 0 otherwise.
Every stress mark thus coincides with a syllable boundary (cf. Section 3.4).
Table 3.7 lists the five instances derived from the phoneme string /bukı � /.

Stress assignment: Experiments

We construct an instance base for English containing 548,417 instances, de-
rived from 77,565 phonemic transcriptions. BP, IB1, IB1-IG, IGTREE, and C4.5
are applied to this instance base. The generalisation error results, the general-
isation error of DC and the overlap and bias error are displayed in Figure 3.5.

The best generalisation accuracy is obtained with IB1-IG, which classifies
2.50% of the test instances incorrectly, on average. The difference between
IB1-IG and IB1 (2.57% incorrect test instances) is small but significant ( � 
 � � 
 �
� � � � � � � � ��� � ). All other differences between all algorithms are significant
with � � � ��� � � . A remarkably bad accuracy is obtained with IGTREE. The
information gain values of the features are relatively similar for this subtask
(see Appendix D). Thus, the construction of trees by IGTREE is based on a
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RESULTS SUMMARY

best algorithm IB1-IG
gen. error (%) 2.50
gen. error, words (%) 15.14

OVERLAP AND BIAS

overlap error (%) 42.27
class bias error (%) 17.07
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Figure 3.5: Results on the stress-assignment subtask. Results summary,
bias, and overlap errors (left), and generalisation errors in terms
of the percentage of incorrectly classified test instances of five
algorithms (right).

feature ordering that is not very sound. Ignoring feature values, such as
IGTREE does when building trees, constitutes a disadvantage in generalisation
accuracy as compared to algorithms that do not ignore any feature values
during classification, viz. IB1 and IB1-IG.

3.6 Chapter conclusion

Table 3.8 lists, for the five morpho-phonological subtasks investigated in
this chapter, the generalisation errors of DC, BP, C4.5, IGTREE, IB1, and IB1-
IG. The results summarise the superiority of IB1-IG on all subtasks. There
are less clear differences between BP, C4.5, IGTREE, and IB1. IGTREE performs
second best to IB1-IG on morphological segmentation, graphemic parsing, and
syllabification. IB1 performs second best to IB1-IG on grapheme-phoneme con-
version and stress assignment. Altogether, these results indicate that when
inductive-learning algorithms are trained on subtasks of word pronunciation,
they can generalise, with an amount of error that seems at least reasonable,
to new instances of those subtasks. However, it is concededly arbitrary to
consider generalisation errors below 5% (i.e., the highest error obtained with
the best-performing algorithm, IB1-IG, on morphological segmentation) to
be reasonable. We therefore concentrate on comparing the generalisation
accuracies of algorithms.



74 CHAPTER 3. LEARNING WORD-PRONUNCIATION SUBTASKS

algorithm
task DC BP C4.5 IGTREE IB1 IB1-IG

morphological segmentation 6.74 6.40 5.42 5.14 5.09 4.78
graphemic parsing 3.99 1.40 1.63 1.39 1.44 1.05
grapheme-phoneme conversion 15.52 8.02 3.76 3.71 4.69 3.10
syllabification 10.07 0.63 0.62 0.46 0.66 0.40
stress assignment 13.39 3.76 3.09 7.36 2.57 2.50

Table 3.8: Summary of the generalisation errors obtained with DC, BP, C4.5,
IGTREE, IB1, and IB1-IG trained on five morpho-phonological sub-
tasks.

Comparing the algorithms, the results strongly point to the superiority of
lazy symbolic learning as displayed by IB1 and IB1-IG. They show the most
suitable type of learning for obtaining the best generalisation accuracy on
the five subtasks. The other three algorithms, BP, C4.5, and IGTREE, spend
considerably more effort than IB1 and IB1-IG during learning in arriving at
compressed knowledge representations, be it decision trees (IGTREE and C4.5)
or real-valued intermediary representations between input and output in an
MFN (BP). Abstraction of learning material by forgetting (data compression)
can therefore claimed to be generally harmful for generalisation accuracy for
our data.

A partial explanation for abstraction by forgetting being harmful to gener-
alisation is the following. The full instance bases used for morphological seg-
mentation, graphemic parsing, and grapheme-phoneme conversion, contain
the same 675,745 letter-window instances when ignoring the classifications of
the different subtasks. Although the words from which these instance bases
are derived are all unique, only 224,677 unique instances occur (since words
can be very alike in their spelling, e.g., in their endings). No less than 49.2%
of these unique instances occur twice or more in the full instance base: in
effect, 83.2% of the 675,745 instances in the full instance base have one or
more identical instances. This percentage is, not surprisingly, equal to the
average overlap between test sets and training sets as exploited directly by
DC. Thus, storing all feature values of all training instances guarantees the
exact matching of about 83.2% of the test instances (or the considerably lower
60.3% with the instance bases of syllabification and stress assignment) to the
stored training instances. When an algorithm does not store all feature values
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of all training instances, as is the case with induction of decision trees and
backpropagation in MFNs, the guarantee to find overlapping instances is lost,
hence generalisation accuracy may be lost.

The generalisation accuracy of an algorithm on all test instances also de-
pends on the best-guess strategy employed to classify the 16.8% (on average)
of the test instances which have no identical instance in the training set. A
good strategy may undo the potential loss of generalisation caused by not
remembering all feature-value information of training instances. For exam-
ple, the strategy of storing default-class information on non-terminal nodes as
employed by IGTREE appears sometimes to be more effective than the strategy
based on counting class occurrences of best-matching instances employed
by IB1 and IB1-IG: IGTREE generalises better than IB1 on graphemic parsing,
grapheme-phoneme conversion, and syllabification.

In conclusion, keeping all feature values of all instances in memory guar-
antees the best generalisation accuracy only when instance-based (lazy) learn-
ing is employed and information gain is added as weighting function. The
method of implementing word-pronunciation subtasks as classification tasks
represented by instance bases containing fixed-size letter instances, touches
on the apparent fact that there are considerable differences in the relevance of
letter positions for the different tasks. The consistent advantage in generalis-
ation accuracy of IB1-IG over IB1 suggests that it is profitable for generalisation
accuracy when a learning algorithm takes this fact into account.
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Chapter 4

Modularisation by sequencing
subtasks

In this chapter we commence applying inductive-learning algorithms to
the word-pronunciation task. Mainstream research on modelling this task
(Allen et al., 1987; Daelemans, 1987; Coker et al., 1990; Van Heuven and Pols,
1993) has worked with the assumption of several necessary levels of ab-
straction between spelling and stressed-phonemic representations. We have
highlighted five levels of abstraction in Section 2.2, and we have applied the
five inductive-learning algorithms BP, IB1, IB1-IG, C4.5, and IGTREE to each
of the five subtasks associated with these levels, i.e., morphological parsing
(henceforth abbreviated as M), graphemic parsing (A), grapheme-phoneme
conversion (G), syllabification (Y), and stress assignment (S). According to
mainstream linguistic ideas, pronouncing words involves performing these
subtasks in a particular sequence. To model word pronunciation in a system,
one first has to model each subtask in a separate module. Second, one has to
connect these modules in such a way that each module receives the correct
type of input and produces the desired type of output that is either used as
input to another module, or used as output of the whole system. We extend
the idea of constructing a sequential-modular word-pronunciation system by
using inductively-learned models as the modules. In Section 4.1 we describe
our procedure for constructing such modular systems of which the modules
are individually trained on their respective subtask.

In the literature, we find different suggestions for specific sequences of the
five subtasks. For example, Allen et al. (1987) suggest that the sequence be
M-A-G-Y-S. (By this acronym we mean that the five subtasks are performed in

77



78 CHAPTER 4. MODULARISATION BY SEQUENCING SUBTASKS

the sequence starting with the leftmost subtask, morphological parsing (M);
the hyphens indicate that the module immediately to the left of the hyphen
provides the input to the module immediately to the right of the hyphen.)
When a module � is placed before another module � in a modular sequence,
the system designer assumes that the output of � is beneficial to learning to
perform the subtask of module � . We provide some examples of the utility
of using information produced by previous modules:

� The word loophole is composed of the morphemes loopand hole. Know-
ing that there is a morphological segmentation between p and h prevents
the incorrect parsing of the grapheme ph. Knowing that p and h are both
single-letter graphemes, it becomes highly unlikely that p or h are pro-
nounced /f/. Having established that p and h are realised as /p/ and
/h/, respectively, it is possible to determine that a syllable boundary lies
between these phonemes (Treiman and Zukowski, 1990). Thus, output
of M can serve as useful information to A, G, and indirectly to Y; output
of G can serve as directly useful information to Y.

� The word payee has primary stress on the second syllable, while the
word pay has primary stress on the first syllable. Having detected that
ee is a morpheme, and knowing (or having induced) that words ending
in ee almost always receive primary stress on the final syllable (because,
linguistically speaking, ee is a stress-attracting affix), the correct stress
can be predicted. Thus, output of M can serve as useful information to
S.

� The word through is composed of three graphemes: th, r, and ough.
This knowledge is essential for transcribing the spelling to the phonemic
transcription: th maps to one phoneme (/ � /, not t and h separately; r
maps to /r/; and ough maps to the single phoneme /u/ and not to
two, three, or four phonemes. Thus, output from A can serve as useful
information to G.

� The pronunciation of the word behave, /b � heıv/, contains two syllables,
/b � / and /heıv/; not three syllables such as /b � /, /heı/, and /vi
/: the final e is not realised in pronunciation and thus cannot be the
nucleus of a third syllable. Thus, the output of A and G can serve as
useful input to Y. Furthermore, combining the facts that the phonemic
transcription of behave contains two syllables and that be is a morpheme
(a stress-neutral affix) which almost never receives stress, can lead to
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the correct conclusion that the second syllable /heıv/ receives primary
stress. Thus, output of M, G and Y can serve as useful information to S.

In Section 4.2, two suggestions for sequential modular word-pronunciation
systems are implemented as inductively-learned modules performing the
subtasks in the designated sequential orderings, viz. M-A-G-Y-S and M-Y-S-
A-G. Two algorithms, IGTREE and BP, are employed to train the individual
modules. The reason for restricting our experiments to these algorithms is
that only IGTREE and BP create relatively small models, which allows main-
taining five-module systems in an average-sized computer memory � . IB1 and
IB1-IG use very large instance bases; simultaneous storage of five instance
bases in average-sized memory is not feasible. C4.5 was excluded for similar
reasons; it generates overly large trees on the subtasks described in Chapter 3
(in particular on grapheme-phoneme conversion, due to an inefficiency in
the tree generation procedure (Daelemans et al., 1997a) which causes C4.5 to
generate arcs for all possible feature values at all nodes of the tree).

The analysis in Subsection 4.2.3 of the two systems M-A-G-Y-S and M-Y-S-
A-G focuses on their respective generalisation accuracies, and on the question
which of the two systems represents the best ordering in terms of generalis-
ation accuracy.

In Section 4.3 we investigate whether the two five-module systems in-
vestigated in Section 4.2 can both be reduced to two three-module systems.
In the section, the hypothesis is formulated that graphemic parsing (A) and
syllabification (Y) could be left implicit when learning grapheme-phoneme
conversion (G) and stress assignment (S), respectively, and can thus be left out
of the sequence of subtasks. This leads to the implementation of the two sys-
tems M-G-S and M-S-G, of which the modules are again trained with IGTREE as
well as BP. In the analysis of results in Section 4.3 the generalisation accuracies
of the M-G-S and M-S-G systems are compared. Furthermore, a comparison
is made with the generalisation accuracies of the two three-module systems
and the two five-module systems, providing indications on the influence of
the number of modules on generalisation accuracy.

While Sections 4.2 and 4.3 report on generalisation accuracies of the four
modular word-pronunciation systems, they do not address the issue of mea-
suring the positive or negative effects of letting modules be dependent of
output from other modules. In Section 4.4 this analysis is carried out by sys-
�
“Average” computer memory, being a volatile concept, should be interpreted as 16 MB,

which was a common quantity in 1996, but which is rapidly becoming less than average.
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tematically investigating the utility of performing one subtask before another,
comparing generalisation accuracies obtained with IGTREE.

Section 4.5 concludes the chapter by summarising the key findings of
Sections 4.2, 4.3, and 4.4.

4.1 Procedures for constructing sequential modular sys-
tems

To construct a modular system one needs to know (a) which modules consti-
tute the system; (b) in which order the modules are passed through; and (c)
how information is passed between the modules. In our experiments, these
three requirements are dealt with as follows.

ad (a) We have constructed modular systems of which the modules perform
one of the five morpho-phonological subtasks described in Chapter 3:
morphological segmentation (M), graphemic parsing (A), grapheme-
phoneme conversion (G), syllabification (Y), and stress assignment (S).

ad (b) The order in which the modules are passed through is constrained to
a sequential order. Only one module is working at a time, and every
module is passed only once. The orderings of subtask in the systems
investigated are the following: M-A-G-Y-S, M-Y-S-A-G, M-G-S, and M-S-G.

ad (c) The streams of information between modules are guided by two pa-
rameters governing each ordering � - � of two modules � and � , viz.
the pass filter and the propagation delay:

1. The pass filter determines what is passed as input from module �
to module � , and what is not. In the systems described here, it
is invariably the case that all output of module � is presented as
input to the subsequent module � in the ordering � - � . Moreover,
it is allowed that the information used as input for a module � is
passed along (i.e., copied) to serve as additional input to � . Thus,
in the ordering � - � -

�
, the input of

�
always includes the output

of � , and may also include the output of � passed along via � .

2. The propagation delay determines when the output of module � is
presented as input to module � . The patience filter is needed to
prevent modules receiving incomplete information as input. We
employ a generic patience filter that allows for the information to
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pass from any module � to any module � only when all instances
of a single word are processed by � ; i.e., information is passed
word-by-word along the modules.

In all our implementations of modular systems, learning is limited to the
individual modules. This learning is performed analogous to the experiments
described on the five morpho-phonological subtasks in Subsections 3.1, 3.2,
3.3, 3.4, and 3.5. The subtasks investigated in Chapter 3 were defined accord-
ing to three rules (cf. page 60):

(i) instances are taken directly from the data extracted from CELEX;

(ii) the input consists of nothing more than letters or phonemes; and

(iii) the output consists only of classes belonging to the task itself.

Defining the subtasks within the four modular systems, rule (i) is maintained.
Rule (ii) has to be dropped from this list for defining modular subtasks, as
some modules in the modular systems explicitly receive both segmentational
information and letters or phonemes. Rule (iii) is maintained.

There is, however, a problem with applying rule (i) in the context of
learning a subtask in a modular system. The rule strictly implies that each
module is trained on perfect input and perfect output, i.e., on input and output
directly taken from the CELEX data. Thus, when applying rule (i) one adheres
to the idea that when an appropriate task decomposition has been found,
it is safe to train each module on its designated subtask using perfect data.
However, there is no guarantee in a trained sequential-modular system that
the actual data received by a module is of the same quality as the data used in
the training of the module. None of the five morpho-phonological subtasks
investigated in Chapter 3 are performed flawlessly by any algorithm. Thus,
modules can be expected to generate some amount of error, most probably on
unseen (test) data. Erroneous output from one module may well constitute
unfamiliar or misleading input to the next module, possibly leading to yet
another classification error by this next module. Errors may cascade: one
error made by any module in the sequence may result in all other subsequent
modules generating errors on the same data.

An adaptation of rule (i) alleviating the idea of maximal accuracy of the
input during learning is the rule (i � ) which states that the input should be
produced by a single source which is assumed to be reliable. That source may be
CELEX, but it may also be a previous module. When the errors generated by
this module display regularities that can be picked up by the next module,
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it is conceivable that the next module will be able to recognise and recover
from these certain types of errors made by its predecessor(s). With rule (i � ),
modules can be said to adapt themselves to the output of the previous module.

To allow for comparison between both approaches to subtask definition,
we have applied rules (i) and (i � ), both in combination with rule (iii), to all
experiments with modular systems. The variant of an experiment imple-
menting rules (i) and (iii) is henceforth referred to as the perfect variant (after
the assumed perfectness of the input and output data extracted from CELEX);
the variant of an experiment implementing rules (i � ) and (iii) is henceforth
referred to as the adaptive variant (after the adaptation occurring between
modules under this variant).

4.2 Modular systems with five modules

In this section we introduce two modular systems for word pronunciation.
Both systems are composed of five modules to be passed through in sequen-
tial order. The architecture of both systems is inspired by existing word-
pronunciation systems. The modular structure of the first system, M-A-G-Y-S,
is inspired on the modular structure of the word-pronunciation subsystem for
pronouncing unknown words of MITALK (Hunnicutt, 1976; Allen et al., 1987).
The modular structure of the second system, M-Y-S-A-G, is inspired by the
word pronunciation subsystem of GRAFON-D (Daelemans, 1987; Daelemans,
1988).

The next two subsections describe the systems and their performances
separately.

4.2.1 M-A-G-Y-S

The architecture of the M-A-G-Y-S system is inspired by SOUND1 (Hunnicutt,
1976; Hunnicutt, 1980), the word-pronunciation subsystem of the MITALK text-
to-speech system (Allen et al., 1987). When the MITALK system is faced with
an unknown word � , SOUND1 produces on the basis of that word a phonemic
transcription with stress markers (Allen et al., 1987). This word-pronunciation
process is divided into the following five processing components:

1. morphological segmentation, attempting to detect affixes and inflections;
�
When a word is ‘unknown’ to MITALK, it means that its morphological decomposition

module and its part-of-speech tagger were not able to analyse the word (Allen et al., 1987).
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2. graphemic parsing, determining which letters or letter groups map to
single phonemes;

3. grapheme-phoneme conversion, performing a context-sensitive rule-based
mapping from letters or letter groups to phonemes;

4. syllabification, finding the syllable boundaries in the phonemic string,
taking into account the affix and inflection boundaries found by the
morphological component; and

5. stress assignment, synthesizing the output of the first three components
and assigning primary, secondary, or no stress to syllable nuclei, guided
by rules from metrical phonological theory (Halle and Keyser, 1971) as
well as heuristics.

Whereas the description of SOUND1 (Hunnicutt, 1976; Hunnicutt, 1980;
Allen et al., 1987) is not in terms of modules, we interpret the decomposition of
word pronunciation as expressed in SOUND1’s division of word pronunciation
into five sequential components as the modular structure of the M-A-G-Y-S

system. This is where any further comparison with SOUND1 stops – we are
not claiming to re-implement SOUND1, nor interpreting results obtained with
M-A-G-Y-S to reflect the performance of SOUND1.

The M-A-G-Y-S architecture is visualised in Figure 4.1. This figure dis-
plays both the modules (sharp-edged boxes) and the representations taken as
input and produced as output by the modules (curved-edged boxes).It can
be seen that the representations include direct output from previous mod-
ules, as well as representations copied from earlier modules. For example,
the stress-assignment module takes as input the syllable boundaries gener-
ated by the syllabification module, but also the phoneme string generated by
the grapheme-phoneme-conversion module, and the morpheme boundaries
generated by the morphological-segmentation module.

From the English CELEX data we use the standard word base of 77,565
unique pairs of words with their stressed phonemic transcriptions. From this
data base, sub-databases are extracted for each of the subtasks of the M-A-G-
Y-S system. M-A-G-Y-S is put to the test with IGTREE

�

and BP. The algorithms
�

Since the input of some of the subtasks of the M-A-G-Y-S system contain feature values with
considerably different value distributions (e.g., letters and segmentation markers), it is more
appropriate to use gain ratio as the feature-weighting function in IGTREE and IB1 (Quinlan,
1993). All experiments henceforth reported with this type of input, with IGTREE and IB1, are
performed with gain-ratio weighting.
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morphological segmentation

letter-phoneme alignment

grapheme-phoneme conversion

syllabification

stress assignment

letter string (word)

letter string + morpheme boundaries

letter string + alignments + morpheme boundaries

phoneme string + morpheme boundaries

phoneme string + morpheme boundaries + syllable boundaries

phoneme string + stress markers

Figure 4.1: Visualisation of M-A-G-Y-S, a word pronunciation system contain-
ing five modules. Curved-edged boxes indicate input / output
representations; sharp-edged boxes denote the five modules.
The input-output mappings performed by the modules are de-
picted by arrows.
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are executed using the standard settings of Table 2.4. For both algorithms,
the perfect and the adaptive variants are tested. We thus perform four tests
of the M-A-G-Y-S architecture: each test is conducted by running a 10-fold CV

experiment on the full system. For the case of the perfect variant, this implies
that during all ten experiments a fixed test set of 10% is withheld during the
training of all modules. After training, the test set is processed sequentially
through all modules of the system. The final output of the perfect variant of
the M-A-G-Y-S system is the average output produced by the final module on
the test sets over the ten experiments.

For the adaptive variant, the training and testing scheme is less trivial.
A module can be trained only after the previous module has been trained;
the source for its training and testing material is defined as “the output of
the previous module”, containing typical errors made by that module (cf.
Section 4.1). To collect the typically erroneous output of a module, a data
base is built containing the output of that module on all test words processed
during the 10-fold CV experiment performed on the module. During each of
the ten sub-experiments in the 10-fold CV experiment, the output produced
on the 10% test words is concatenated to the data base. After the 10-fold CV

experiment, the newly-formed data base contains as many items (words) as
the data base used for training the module. The newly-formed data base is
then partitioned into training and test sets again, for the 10-fold CV experiment
on the next modular subtask. The average accuracy of the final module
on its specific instance base (containing all cumulative performances of its
four predecessors) over the 10-fold CV experiment with this instance base
can be taken as the generalisation accuracy of the total M-A-G-Y-S system,
as it expresses the accuracy of the total system as if the full database were
processed as one large test set through all five modules in one pass.

Figure 4.2 displays the results obtained with IGTREE and BP on the perfect
and adaptive variants of M-A-G-Y-S. A classification of an instance is regarded
as incorrect if either or both of the phoneme and stress marker is incorrect.

The accuracies of BP and IGTREE on the perfect variant do not differ signif-
icantly ( � 
 � ��
 � � � � �

� � � � ��� � ). However, significant differences are found
between the perfect and adaptive variants of BP ( � 
 � ��
 � � � ��� � � � � ��� � � ), as
well as between the perfect and adaptive variants of IGTREE ( � 
 � � 
 � � � � � � � � �
� ��� � � ). Moreover, the accuracy of IGTREE under the adaptive variant is signif-
icantly better than BP under the adaptive variant ( � 
 � ��
 � � � � � � � � � � ��� � � ).
Apparently, IGTREE can take good advantage of the adaptive strategy; the out-
puts of modules in the IGTREE-trained M-A-G-Y-S system do appear to contain
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RESULTS SUMMARY

best algorithm IGTREE
(adaptive)

gen. error (%) 10.59
gen. error, words (%) 54.44
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Figure 4.2: Results on the M-A-G-Y-S task. Results summary (left), and gener-
alisation errors in terms of the percentage of incorrectly classified
test instances by IGTREE and BP on the perfect (P) and adaptive
(A) variants (right).
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Figure 4.3: Average numbers of nodes in the decision trees generated by
IGTREE for each of the five modules of the M-A-G-Y-S system,
trained on the perfect (P) and adaptive (A) variants of the M-A-
G-Y-S task.
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typicalities that can be exploited in learning the tasks of consecutive modules.
BP appears to lack the ability to recognise typical errors with the same success
as IGTREE. One cause of BPs

Exploiting typicalities in errors of previous modules by IGTREE may lead
to larger trees, as these trees have to represent both the regular classifications
and the typical erroneous ones. This is confirmed by Figure 4.3 which displays
the average number of nodes of the decision trees created by IGTREE for the
perfect and adaptive variants. IGTREE builds larger trees when trained under
the adaptive variant than when trained under the perfect variant. With the
larger trees, better generalisation accuracy is obtained.

4.2.2 M-Y-S-A-G

The architecture of M-Y-S-A-G, displayed in Figure 4.4, is inspired by the ar-
chitecture of GRAFON-D (Daelemans, 1987; Daelemans, 1988), a text-to-speech
system for the Dutch language. In the word-pronunciation subsystem of
GRAFON-D, a word is analysed by the following four components:

1. morphological segmentation, searching for an optimal segmentation of a
word into morphemes using a two-step generate-and-test process;

2. syllabification, syllabifying the morphologically analysed word;

3. stress-assignment, placing stress markers on the syllabified, morpholog-
ically analysed word; and

4. transliteration mapping and phonological rules, synthesizing the inform-
ation on syllable and morpheme boundaries and stress placement into
a phonemic transcription.

Note that the description of the last component does not separate
letter-phoneme conversion into graphemic parsing and grapheme-phoneme
conversion. This is because in the GRAFON-D transliteration component
graphemes are not taken as the basic input unit for grapheme-phoneme
conversion, but rather the (groups of) letters that make up the onsets, nu-
clei, and codas of syllables. Transliteration to phonemes is performed on
these letters or letter groups. For our M-Y-S-A-G system we explicitly abstract
away from this transliteration strategy, and model the transliteration employ-
ing the modules used in the M-A-G-Y-S system, viz. graphemic parsing and
grapheme-phoneme conversion. This choice allows us to compare the M-A-
G-Y-S and M-Y-S-A-G systems by letting both systems be composed of the same
modules. As with M-A-G-Y-S, we are not claiming to re-implement GRAFON-D,
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morphological segmentation

syllabification

stress assignment

letter-phoneme alignment

grapheme-phoneme conversion

letter string (word)

letter string + morpheme boundaries

letter string + morpheme and syllable boundaries

letter string + morpheme boundaries + stress markers

letter string + morpheme boundaries + stress markers + alignments

phoneme string + stress markers

Figure 4.4: Visualisation of M-Y-S-A-G, a word-pronunciation system con-
taining five modules. Round-edged boxes indicate input–output
representations; sharp-edged boxes denote the modules. The
input–output mappings performed by the modules are depicted
by arrows.

nor interpreting the results obtained with M-Y-S-A-G as performance results of
GRAFON-D. The assumption underlying GRAFON-D that we do adopt explicitly
in M-Y-S-A-G is that syllabification and stress assignment should be performed
before grapheme-phoneme conversion, rather than vice versa.

The experiments on the M-Y-S-A-G architecture are performed analogous
to the experiments with M-A-G-Y-S reported in Subsection 4.2.1. Figure 4.5 dis-
plays the generalisation errors of IGTREE and BP on the perfect (P) and adaptive
(A) variants of the M-Y-S-A-G task. The difference in accuracy between the two
variants (P and A) is significant, notably for IGTREE ( � 
 � ��

� � � � ��� � � � � ��� � � )
but also for BP ( � 
 � ��
 � � ��� � � � � � ��� � � ). Again, as with M-A-G-Y-S, a better
generalisation accuracy is obtained with the adaptive variant, and is the best
accuracy obtained with IGTREE under this variant (significantly better than BP,
� 
 � ��
 � � � � � � � � � � ��� � � ).
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RESULTS SUMMARY

best algorithm IGTREE
(adaptive)

gen. error (%) 11.29
gen. error, words (%) 60.14
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Figure 4.5: Results on the M-Y-S-A-G task. Results summary (left) and gener-
alisation errors in terms of the percentage of incorrectly classified
test instances by IGTREE and BP on the perfect (P) and adaptive
(A) variants (right).

Figure 4.6 displays the average number of nodes of the decision trees cre-
ated by IGTREE for the five modules of the M-A-G-Y-S system under the perfect
and adaptive variants. Analogous to Figure 4.3, Figure 4.6 indicates that
IGTREE builds larger trees for the modular subtasks under the adaptive vari-
ant as compared to the perfect variant. The figure shows that especially the
trees built for the grapheme-phoneme-conversion module are much larger
for the adaptive variant than for the perfect variant. Figure 4.3 displayed a
similar phenomenon for the grapheme-phoneme-conversion module in the
M-A-G-Y-S system; with the M-Y-S-A-G system, trees built for this subtask are
even larger (viz. 210,509 nodes on average) than with the M-A-G-Y-S system
(viz. 153,678 nodes on average). These results suggest that under the adap-
tive variant the trees constructed by IGTREE become increasingly bigger than
their counterpart trees under the perfect variant as the module has more pre-
decessor modules. More predecessing modules may generate more errors;
unresolved errors are propagated further, and the total amount of unresolved
propagated errors appears to increase roughly with each module in the se-
quence. The G-module in M-A-G-Y-S receives unresolved propagated errors
from two modules, and needs 64,183 more nodes than under the perfect vari-
ant. The G-module in M-Y-S-A-G receives unresolved propagated errors from
four modules, and needs 103,161 more nodes. The surplus of effort put into
building trees by IGTREE under the adapted variant is nevertheless profitable
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Figure 4.6: Average numbers of nodes in the decision trees generated by
IGTREE for each of the five modules of the M-Y-S-A-G system,
trained on the perfect (P) and adaptive (A) variants of the M-Y-S-
A-G task.

for generalisation accuracy: as with M-A-G-Y-S, generalisation accuracy of the
M-Y-S-A-G system constructed under the adaptive variant is significantly better
than generalisation accuracy under the perfect variant (cf. Figure 4.5).

4.2.3 Comparing M-A-G-Y-S and M-Y-S-A-G

Figure 4.7 summarises the best results obtained with both systems. The figure
shows a small but significant difference ( � 
 � ��
 � � ��� � � � � � ��� � � ) between the
accuracies on the M-A-G-Y-S and M-Y-S-A-G tasks, with the former system dis-
playing the best generalisation accuracy. Performing graphemic parsing and
grapheme-phoneme conversion before syllabification and stress assignment
thus leads to better word-pronunciation accuracy than performing the pairs
of tasks in reverse order.

The actual accuracies of both systems are not impressive: the M-A-G-Y-S

system classifies 10.6% of all test patterns incorrectly, the M-Y-S-A-G system
11.3%. In terms of the percentage of flawlessly processed test words (i.e.,
test words of which the phonemic transcription with stress markers does not
contain any flaws in either the phonemes or the stress markers) the M-A-G-Y-S

system reaches a disappointing score of 45.6%; M-Y-S-A-G produces only 39.9%
of the test words flawlessly.
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Figure 4.7: Generalisation errors of IGTREE, under the adaptive variant, ap-
plied to the two modular systems M-A-G-Y-S and M-Y-S-A-G.

4.3 Modular systems with three modules

In Section 3.3 we have shown that it is possible to integrate graphemic parsing
with grapheme-phoneme conversion, by introducing phonemic nulls as the
mapping for letters which are not pronounced. This subtask definition of
grapheme-phoneme conversion is also used in the NETTALK model (Sejnowski
and Rosenberg, 1987). It is therefore plausible to integrate the graphemic-
parsing module (A) and the grapheme-phoneme module (G) into a single
grapheme-phoneme conversion module G.

A similar argument can be made for integrating the syllabification and
stress assignment modules into a single stress-assignment module. We re-
marked in Section 3.5 that stress markers are placed solely on the posi-
tions which are also marked as syllable boundaries (i.e., on syllable-initial
phonemes). Removing the syllabification subtask makes finding those syl-
lable boundaries which are relevant for stress assignment an integrated part
of stress assignment. Syllabification (Y) and stress assignment (S) could be
integrated in a single stress-assignment module S.

When both pairs of modules are reduced to single modules, two three-
module systems are obtained. The first system, M-G-S, is derived from M-A-G-
Y-S. The second system, M-S-G, stems from M-Y-S-A-G. Experiments with both
systems are described in the subsequent Subsections 4.3.1 (M-G-S) and 4.3.2
(M-S-G). A comparison between their accuracies and their five-module coun-
terparts is made in Subsection 4.3.3.
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morphological segmentation

grapheme-phoneme conversion

stress assignment

phoneme string + stress markers

letter string + morpheme boundaries

letter string (word)

phoneme string (incl. phonemic nulls) + morpheme boundaries

Figure 4.8: Visualisation of M-G-S, a word-pronunciation system containing
three modules. Round-edged boxes indicate input / output
representations; sharp-edged boxes denote the modules. The
input–output mappings performed by the modules are depicted
by arrows.

4.3.1 M-G-S

Figure 4.8 displays the architecture of the M-G-S system. When compared to
the M-A-G-Y-S system (Figure 4.1), we see that neither graphemic parsings nor
syllable boundaries are passed as information between modules, since the
subtasks associated with these types of morpho-phonological information
are integrated in the grapheme-phoneme conversion module and the stress-
assignment module, respectively. Experiments on this system are performed
analogous to the experiments with the M-A-G-Y-S and M-Y-S-A-G systems.

The generalisation errors of IGTREE and BP under both the perfect and
adaptive variants are displayed in Figure 4.9. The figure shows a better
accuracy of IGTREE than of BP. Regardless of the training variant, BP clearly
suffers from bad generalisation accuracy of the system. In fact, the accuracies
obtained with BP on M-G-S are hardly different from those obtained with BP on
M-A-G-Y-S (cf. Figure 4.2). For IGTREE, however, a considerable improvement
over its accuracy on M-A-G-Y-S is observed. On the adaptive variant the
difference is significant ( � 
 � ��
 � � � � � � � � � � ��� � � ). Furthermore, the adaptive
variant of IGTREE on M-G-S yields a significantly better accuracy than the
perfect variant ( � 
 � ��
 � � � ����� � � � � ��� � � ).

As was shown in Figure 4.3, IGTREE created larger trees in the M-A-G-Y-S

system for the adaptive variant as compared to the trees created for the perfect
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RESULTS SUMMARY

best algorithm IGTREE
(adaptive)

gen. error (%) 7.86
gen. error, words (%) 55.11
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Figure 4.9: Results on the M-G-S task. Results summary (left), and general-
isation errors in terms of the percentage of incorrectly classified
test instances by IGTREE and BP on the perfect (P) and adaptive
(A) variants (right).

variant. Figure 4.10 displays the total numbers of nodes of the trees generated
for each of the three modules of the M-G-S system. The differences between
the magnitudes of the trees are small, unlike the differences in tree sizes in
the M-A-G-Y-S system. Only the final module (viz. stress assignment) of the
M-G-S system trained under the adaptive variant needs a significantly larger
tree than in the case of the perfect variant ( � 
 � ��
 � ��� ��� � � � � � ��� � � ). These
results show that the M-G-S task constitutes a better modularisation than the
M-A-G-Y-S task.

4.3.2 M-S-G

The system architecture for M-S-G is shown in Figure 4.11. M-S-G stems from
M-Y-S-A-G: it replaces the syllabification and stress-assignment modules by
one stress assignment module S, and replaces the graphemic-parsing module
and grapheme-phoneme-conversion module by a single grapheme-phoneme
module G.

The overall generalisation errors of IGTREE and BP are displayed in Fig-
ure 4.12. The figure displays analogous differences between BP and IGTREE

under the two variants as Figure 4.9 does for the M-G-S system. Yet again, the
results obtained under the adaptive variant are significantly better than those
obtained under the perfect variant, for BP ( � 
 � ��
 � � � ��� � � � � ��� � � ) and IGTREE
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Figure 4.10: Average numbers of nodes in the decision trees generated by
IGTREE for each of the three modules of the M-G-S system,trained
on the perfect (P) and adaptive (A) variants of the M-G-S task.
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Figure 4.11: Visualisation of M-S-G, a word-pronunciation system contain-
ing three modules. Round-edged boxes indicate input–output
representations; sharp-edged boxes denote the modules. The
input–output mappings performed by the modules are de-
picted by arrows.
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RESULTS SUMMARY

best algorithm IGTREE
(adaptive)

gen. error (%) 8.41
gen. error, words (%) 57.70

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

BP IGTREE

ge
ne

ra
lis

at
io

n 
er

ro
r 

(%
)

P

14.39

A

13.57

P

11.27

A

8.41

P

14.39

A

13.57

P

11.27

A

8.41

Figure 4.12: Results on the M-S-G task. Results summary (left) and general-
isation errors in terms of the percentage of incorrectly classified
test instances by IGTREE and BP on the perfect (P) and adaptive
(A) variants (right).

( � 
 � � 
 � � � � � � � � � � ��� � � ). The accuracy of IGTREE is significantly better than
that of BP under the adaptive variant ( � 
 � ��
 � � � � ��� � � � � ��� � � ). Moreover,
IGTREE performs better on the M-S-G task than on M-Y-S-A-G under the adaptive
variant ( � 
 � ��
 ����� � � � � � � � ��� � � ), again indicating that decomposition of the
word-pronunciation task in the three-module systems is better learnable for
inductive-learning algorithms.

Figure 4.13 displays the amount of nodes in the trees constructed by IGTREE

under the perfect and adaptive variants. In contrast with the previous figures
displaying tree sizes under the perfect and adaptive variants (Figures 4.3, 4.6,
and 4.10), the figure shows one occurrence of a slight decrease in average tree
size on a single module trained under the adaptive variant, as compared to the
perfect variant. The stress-assignment (S) module trained under the adaptive
variant leads to trees with 78,322 nodes on average, while training under the
perfect variant leads to trees with 80,402 nodes on average. It appears that
there are typical errors in the output of the M-module that can be recognised
and exploited favourably by the S-module. In sum, the M-S-G modularisation
is better than the M-Y-S-A-G both in terms of the total number of nodes needed
(cf. Figure 4.6) and in the amount of propagated errors in the system.
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Figure 4.13: Average numbers of nodes in the decision trees generated by
IGTREE for each of the three modules of the M-S-G system,trained
on the perfect (P) and adaptive (A) variants of the M-S-G task.
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Figure 4.14: Generalisation errors of IGTREE, under the adaptive variant,
applied to the four modular systems M-A-G-Y-S, M-Y-S-A-G, M-G-
S, and M-S-G.

4.3.3 Comparing three-module and five-module systems

Figure 4.14 displays the results obtained from applying IGTREE under the
adaptive variant to each of the four systems. These lowest error results reflect
the best accuracies obtained with IGTREE for each of the systems.

The difference in generalisation accuracy between M-A-G-Y-S and M-G-S is
distinctly large, and turns out to be significant ( � 
 � ��
 � � � � � � � � � � ��� � � ), as is
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Figure 4.15: Average numbers of nodes in the decision trees generated by
IGTREE for each of the four modular systems (trained under the
adaptive variant).

the case with the difference between M-Y-S-A-G and M-S-G ( � 
 � � 
 � � � � � � � � �
� ��� � � ). Thus, the three-module systems perform better than their five-module
counterparts. Using three modules as opposed to five considerably reduces
the amount of errors on test material.

Another advantageous difference between three-module systems and
five-module systems is the total amount of memory needed for storing the
trees. Figure 4.15 displays the summed number of nodes for each of the four
IGTREE-trained systems under the adaptive variant. Each bar is divided into
compartments indicating the amount of nodes in the trees generated for each
of the modular subtasks.

In Subsections 4.3.1 and 4.3.2 we noted that IGTREE constructed larger M-
A-G-Y-S systems than M-G-S systems, and larger M-Y-S-A-G systems than M-S-G

systems; for reasons of comparison this result is again included in Figure 4.15.
The figure also provides indications of the difference between M-A-G-Y-S and
M-Y-S-A-G, and between M-G-S and M-S-G. This difference relates directly to the
different ordering of grapheme-phoneme conversion and stress assignment,
but it is dependent of the algorithm by which they are produced (IGTREE,under
the adaptive variant). The compartments displayed in the bars of Figure 4.15
show that the difference is mostly due to grapheme-phoneme conversion
taking up a disproportionally large part of the total amount of nodes in both
the M-Y-S-A-G and the M-S-G system, i.e., when grapheme-phoneme conversion
is preceded by stress assignment.
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Figures 4.14 and 4.15 show that the model with the best accuracy, M-G-S, is
also the model taking up the smallest number of nodes. Differences in accu-
racy, displayed in Figure 4.14, roughly correlate with differences in summed
tree sizes: the smaller the total number of nodes, the better the generalis-
ation accuracy. The statement that abstraction by compression is generally
harmful for generalisation accuracy does not apply here: however, the lat-
ter statement refers to different algorithms applied to the same (sub)task.
Here, results show that different definitions of the same task may allow one
learning algorithm employing compression to obtain better generalisation ac-
curacy with smaller models. The improvements in generalisation accuracy
and size of induced models can be taken as indications for the appropriateness
of the particular task definition: M-G-S is the most appropriate task definition
(i.e., the definition leading to the best generalisation accuracy) of the four
alternatives.

4.4 The utility of sequential modularisation

When the output of a module is presented as input to another module within
a modular system, it is assumed that this input is useful for the classifica-
tion subtask performed by the module. The sequences of the modules and
their connectivity in a modular system reflect the assumptions of the system
designer on the utilities of the various modules in the system. Below we anal-
yse which of these assumptions are justified by examining the experimental
performance results of the inductively-learned subtask modules. The results
obtained with each module contain a large amount of rather opaque inform-
ation, since the results are affected by four factors: (i) which other modules
precede the module (hence, of which modules input is received), (ii) the order
of these preceding modules, (iii) the way in which the system is learned, viz.
under the perfect or adaptive variant, and (iv) which learning algorithm is
used. Given these factors, it is hard, if not impossible, to determine exactly
what the utility of a single modular input is to a certain module, since this
effect is a merge of different effects. Only the net effect (i.e., the module’s
generalisation accuracy) is known. We rule out the factors (iii) and (iv) men-
tioned, by only investigating modules in systems trained with IGTREE under
the adaptive variant, as this combination produces the best generalisation
accuracies.

To measure the effect of including the output of module � in the input of
module � , we compute a utility effect expressing the difference between the
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generalisation accuracy of module � without the output of module � in the
input, and the generalisation accuracy of module � with the output of module
� in the input. A positive utility effect implies that the inclusion of the output
of module � as input to module � has lead to a lower generalisation accuracy
on the subtask performed by � : including the output of module � in � ’s input
is profitable. A negative utility effect indicates that including � ’s output in
� ’s input is not profitable for generalisation accuracy.

The utility of the morphological-segmentation (M) subtask on the A, G, Y,
and S tasks can be computed by subtracting the generalisation error obtained
on the four corresponding isolated subtasks (described in Subsections 3.2
to 3.5) from the generalisation error of the second modules in the M-A-G-Y-S,
M-G-S, M-Y-S-A-G, and M-S-G systems, respectively. For example, for graphemic
parsing, the generalisation error of IGTREE on the isolated graphemic-parsing
subtask is 2.39%, while the error on the A-module in the M-A-G-Y-S system
(trained with IGTREE under the adaptive variant) is 2.50%. The utility effect
is therefore 2.39 � 2.50 � -0.11. Since the utility effect is negative, it can
be concluded that including the output of the morphological-segmentation
module as input in the graphemic-parsing subtask is not profitable for the
generalisation accuracy on the latter task.

Computing the utility effect of a module different from morphological
segmentation is less straightforward. Suppose that we want to compute the
utility effect of including the output of module � as input in module

�
, when

neither � nor
�

perform morphological segmentation. In the case of an M-
� -

�
system, the input to

�
includes the output of � , but also the output of

M. Moreover, the output of M is also included in the input of � . When the
accuracy of

�
in M- � -

�
is subtracted from the accuracy of

�
performed in

isolation, it is not possible to interpret the resulting difference as a utility effect
of � only. The chosen alternative to compute the utility of � as input to

�

is to compute the difference between the generalisation error of
�

in M- � -
�

and that of
�

in M-
�

- � � � . The resulting utility effect can only be interpreted
when taking into account that both modules � and

�
receive input from M.

Table 4.1 lists all computed utility effects. Cells in the Table represent the
utility effect of including the output of the module in the corresponding row,
as input in the module in the corresponding column. An empty cell occurs
when (i) the module in the row is identical to the module in the column, (ii)
the module in the row is never the immediate predecessor of the module in
the column (e.g., A never occurs immediately before Y), or (iii) more modules
precede the module in the row and the module in the column than just M (e.g.,
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subsequent module
module A G Y S

M � 0.11 � 0.27 � 1.01 � 3.49
A � 4.60
G � 0.60
Y � 0.96
S � 0.48

Table 4.1: Overview of utility effects of including the output of modules (in
rows) as input to subsequent modules (in columns) in sequential
modular systems, trained with IGTREE under the adaptive variant.
A positive number in a cell indicates a better accuracy of the
module in the column when the output of the module in the row
is included in the input, as opposed to when it is excluded from
the input.

S occurs immediately before A, but only in M-Y-S-A-G; the Y module preceded
the S module, and there is no M-Y-A-G system to compare results with).

The utility of morphological segmentation

As a first analysis, we investigate the effect of morphological boundaries
as extra input to the modules placed immediately after the morphological-
segmentation module of all four modular systems, i.e., graphemic parsing
in M-A-G-Y-S, grapheme-phoneme conversion in M-G-S, syllabification in M-
Y-S-A-G, and stress assignment in M-S-G. The input these modules receive
contains letters augmented with the output of the morphological segmenta-
tion module, which is the same for all systems, and which does not contain
any propagated errors from any other modules.

The results in the first row of Table 4.1 show that morphological bound-
aries, yet containing errors, constitute useful input only to the stress-
assignment module (this difference is highly significant, � 
 � ��
 � � � � � � � � � �
� ��� � � ). Interestingly, no positive effect is measured on graphemic-parsing
in the M-A-G-Y-S system, nor on grapheme-phoneme-conversion in the M-G-
S system, nor on the syllabification task in the M-Y-S-A-G system. A part
of the negative effect of including morpheme boundaries can be attributed
to the errors of the morphological-segmentation module. Nevertheless, the
negative effect on syllabification in M-Y-S-A-G suggests that morphology does
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not play any role in syllabification, which is in accordance with mainstream
phonological theories (Selkirk, 1984; Kenstowicz, 1993).

The utility of graphemic parsing

Graphemic parsing as a separate subtask occurs in the M-A-G-Y-S and M-Y-S-A-G

systems. The assumption underlying both systems is that aligning phonemes
with letters is a necessary subtask that needs to be performed before the
conversion from graphemes to phonemes is performed. In the M-S-G and
M-G-S systems it is assumed that it is better to incorporate graphemic pars-
ing directly in the output of the grapheme-phoneme-conversion task. These
two assumptions can be tested by comparing the generalisation accuracy on
the grapheme-phoneme conversion task between M-A-G-Y-S and M-G-S, as ar-
gued earlier. The results displayed in the second row of Table 4.1 show that
the placement of graphemic parsing as a separate module before grapheme-
phoneme conversion leads to drastically worse accuracy on the latter module.
The graphemic-parsing module apparently produces errors that have a pro-
found negative effect on the accuracy of the grapheme-phoneme-conversion
module. The results suggest that it is better to intergrate graphemic parsing
with grapheme-phoneme conversion than be performed as a separate sub-
task before grapheme-phoneme conversion when learning these tasks with
IGTREE.

The utility of grapheme-phoneme conversion

Grapheme-phoneme conversion produces phonemes as output. While these
phonemes are essential for constituting half the word-pronunciation output,
they are also assumed to be useful as input to stress assignment in the M-
A-G-Y-S and M-G-S systems. An analysis of the utility of grapheme-phoneme
conversion should therefore focus on the comparison of the generalisation ac-
curacies on stress assignment in the two three-module systems. The accuracy
difference, listed in the third row of Table 4.1, indicate that inclusion of the
output of the grapheme-phoneme-conversion task in the input of the stress
assignment task (i.e., phonemes and morpheme boundaries rather than letters
and morpheme boundaries) improves the generalisation accuracy of IGTREE

on the latter task by a significant margin ( � 
 � ��
 � � � � � � � � � � ��� � � ). This
means that IGTREE applied to stress assignment with morpheme boundaries
and phonemes as input (including erroneous phonemes), performs better
than IGTREE applied to stress assignment on the basis of morpheme bound-
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aries and letters. As stated earlier, this utility effect is dependent of the
morphological-segmentation module.

The utility of syllabification

The effect of including the syllabification subtask as a module before stress
assignment can be tested in a way analogous to the utility of graphemic pars-
ing, by comparing the accuracy on stress assignment in the pair M-Y-S-A-G and
M-S-G. In M-Y-S-A-G, syllabification is assumed to provide useful information
for the stress assignment module. It was argued earlier in Section 3.5 that,
as stress markers are placed on syllable boundaries, it is useful to know the
place of the syllable boundaries before performing stress assignment. The
accuracy differences listed in Table 4.1 indicate that this is not the case, at least
not with the additional input from the morphological-segmentation module.
The syllabification module, which was found to suffer from input from the
morphological-segmentation module (viz. � 1.01%, as listed in the top row of
Table 4.1), produces errors on test material that lead to extra errors generated
by the stress-assignment module, as compared to the stress-assignment mod-
ule in the M-S-G system. In conclusion, it can be left to the stress-assignment
module to implicitly learn to detect syllable boundaries necessary for produc-
ing correct stress assignments.

The utility of stress assignment

To investigate the utility of including stress assignments as input to grapheme-
phoneme conversion, we perform an analysis analogous to investigating the
utility of grapheme-phoneme conversion before stress assignment. We com-
pare the results obtained on grapheme-phoneme conversion with the critical
pair M-G-S and M-S-G. The accuracy difference is listed on the fifth row of
Table 4.1. The difference indicates that when grapheme-phoneme convers-
ion is preceded by stress assignment as in M-S-G, the accuracy of IGTREE on
grapheme-phoneme conversion becomes significantly worse as compared to
the case of M-G-S, where grapheme-phoneme conversion is the first mod-
ule ( � 
 � ��
 � �

� � � � � � � ��� � � ). Thus, performing stress assignment before
grapheme-phoneme conversion has a negative effect, compared to grapheme-
phoneme conversion taking only takes letters and morphological boundaries
as input.



4.5 CHAPTER CONCLUSION 103

4.5 Chapter conclusion

In Subsections 4.2.3 and 4.3.3 we have summarised the most important and
significant comparisons of the investigated modular systems. We provide
the conclusions drawn from these comparisons. The experiments were per-
formed with two algorithms (IGTREE and BP), on a specific data set (the CELEX

data) and thus our conclusions cannot be extrapolated to hold for other
differently-constructed or differently-learned modular systems for English
word pronunciation in general.

� Surprisingly, generalisation accuracy improves when the amount of
modules is decreased from five to three. Graphemic parsing can best
be integrated in grapheme-phoneme conversion, and syllabification can
best be integrated in stress assignment. Thus, it is better to construct the
three-module systems M-G-S and M-S-G than to construct the five-module
systems M-A-G-Y-S and M-Y-S-A-G, respectively.

� With a five-module sequential architecture, it is better to perform
graphemic parsing and grapheme-phoneme conversion (A-G) before
syllabification and stress assignment (Y-S), than to perform Y-S before
A-G. Similarly, with a three-module architecture, it is better to perform
grapheme-phoneme conversion (G) before stress assignment (S) than
vice versa.

� Including the output of modules as input to subsequent modules is
profitable only in a limited number of cases in our experiments. Posi-
tive utility effects are found only with morphological segmentation as
input to stress assign<ment, and grapheme-phoneme conversion as in-
put to stress assignment (when trained with IGTREE under the adaptive
variant).

� IGTREE performs consistently better than BP.

� Training modules under the adaptive variant yields consistently bet-
ter generalisation accuracies than training modules under the perfect
variant.

It can be asserted that sequential modular systems are subject to two oppo-
site effects: first, a accuracy-increasing summed utility effect which allows sep-
arate modules to profit in certain cases from the output of previous modules,
and second, a accuracy-decreasing cascading error effect that increases over
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longer sequences of modules, and can only partly be countered by training
modules under the adaptive variant. The system in which the summed-utility
effect is maximal (when trained with IGTREE under the adaptive variant) is
the three-module M-G-S system.

A comparison with word-pronunciation systems with different types of
modular structure, in Chapters 5 and 6, will provide the opportunity to eval-
uate the best generalisation accuracy obtained with IGTREE on the M-G-S task.



Chapter 5

Modularisation by parallelising
subtasks

The sequentiality of the modular systems investigated in Chapter 4 has been
adopted from sequential modularisations of word pronunciation in two ex-
isting text-to-speech systems. The experiments reported in Chapter 4 demon-
strate that inductively-learned modular systems yield reasonable general-
isation accuracy. However, we could not determine the utility of sequential
modularisation altogether, since for a sound comparison we lacked the gener-
alisation accuracies of systems without sequential modularisation. Chapters 5
and 6 provide such results.

In this chapter we investigate modular systems in which subtasks are
performed by one or more modules. Each module performs a subtask inde-
pendent of the output of other modules (in one investigated system, there
is only one module). All modules receive an identical input and generate
different output in parallel. The output of each module constitutes a partial
output of the word-pronunciation task; the output of the whole system is a
synthesis of the partial outputs of its modules. A successful generalisation
accuracy with parallelised subtasks would suggest a relative independence
of the subtasks: in contrast with the utility assumptions underlying proposed
sequential modular systems, the assumption underlying a parallel modu-
lar system is that the subtasks can best be performed without including the
output of a module into the input of another module.

Modularisation by parallelisation implies defining a certain number �
( � � � ) partial subtasks. A subtask is called partial when its output consists of
sub-elements of the elements of the output of the word-pronunciation task,

105
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which consists of phonemes with stress markers. We have investigated three
systems in which three values of � are tested: (i) � � � , (ii) � � � , and (iii)� � � � :
ad (i) The system with � � � is the base-line case with a single module. In

this system the word-pronunciation task is defined as mapping letter
instances to phonemes and stress markers taken together in one com-
bined class. The name of the system is GS, denoting that it performs
grapheme-phoneme conversion (G) and stress assignment (S) together
as a one-pass classification task. The GS system is described in Sec-
tion 5.1. The algorithms applied to the GS task are BP, IB1, IB1-IG, and
IGTREE � .

ad (ii) In the system with � � � , two subtasks are performed in parallel, viz.
the mapping of letter windows to phonemes (G), and the mapping of
letter windows to stress assignments (S). The name of the system is G/S,
where the slash / denotes the parallel, independent processing of G and
S. The G/S system is described in Section 5.2. All five algorithms are
applied to the G/S task.

ad (iii) In the system with � � � � , the G subtask is divided into 25 partial sub-
tasks, viz. the detection of 25 articulatory features (cf. Subsection 2.2.2;
Appendix A). The 26th task is the stress-assignment (S) task as in the G/S

system. Phonemes can be uniquely characterised by their articulatory
feature values, hence, a successful detection of all features will yield a
successful classification of the phoneme (Dietterich, Hild, and Bakiri,
1995; Dietterich and Bakiri, 1995; Wolters, 1997. This system is named
ART/S, where ART stands for the 25 articulatory-feature-detection tasks.
The ART/S system is described in Section 5.3. Due to the large number
of experiments involved in learning the 25 partial subtasks, only IGTREE

was employed because of its fast learning and low memory demands.

Section 5.4 provides a summary and a brief evaluation of the results ob-
tained; a comparison is made between the accuracies of IGTREE on these three
systems and the sequential-modular systems described in Chapter 4.

�
C4.5 is left out of the comparison because it could not construct a tree when applied to the

GS training material using less than 128 Mb of system memory.
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letter string (word)

stressed-phoneme string

combined grapheme-phoneme conversion
and stress assignment

Figure 5.1: Visualisation of GS, a single-module word-pronunciation system.
Round-edged boxes indicate input–output representations; the
sharp-edged box denotes the single module. The input–output
mappings performed by the module are depicted by arrows.

5.1 GS: Word pronunciation as a single one-pass task

GS is a single-module system in which only one classification task is performed
in one pass. The GS task integrates grapheme-phoneme conversion and stress
assignment: to classify letter windows as corresponding to a phoneme with a
stress marker (henceforth referred to as PS). A PS can be either (i) a phoneme or
a phonemic null (cf. Section 3.3) with stress marker ‘0’, or (ii) a phoneme with
stress marker ‘1’ (i.e., the first phoneme of a syllable receiving primary stress),
or (iii) a phoneme with stress marker ‘2’ (i.e., the first phoneme of a syllable
receiving secondary stress). Figure 5.1 visualises the simple architecture of GS

which does not reflect any linguistic expert knowledge about decompositions
of the word-pronunciation task. It only assumes the presence of letters at the
input, and phonemes and stress markers at the output.

Table 5.1 displays example instances and their PS classifications generated
on the basis of the word booking for the GS task. The phonemes with stress
markers (PSs) are denoted by composite labels. For example, the first instance
in Table 5.1, book, maps to class label /b/1, denoting a /b/ which is the
first phoneme of a syllable receiving primary stress.

Symbolic-learning algorithms can only treat the PS classes as atomic
classes, since the algorithms are restricted to learning one classification task
at a time (but see Dietterich and Bakiri, 1995, who describe error-correcting
output codes as a means for converting atomic classifications to strings of
parallel binary classifications – an approach which is computationally not
feasible for our purposes due to the very computing-intensive and memory-
intensive modularity and learning). For BP, however, it is possible to learn
more classification tasks simultaneously within the same MFN (Sejnowski and
Rosenberg, 1987). Hence, when applying BP to GS, one is faced with a choice
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instance left focus right classification
number context letter context

1 b o o k /b/1
2 b o o k i /u/0
3 b o o k i n /-/0
4 b o o k i n g /k/0
5 o o k i n g /ı/0
6 o k i n g / � /0
7 k i n g /-/0

Table 5.1: Example of instances generated for task GS from the word booking.

how to represent combined classes: (i) by representing each subclass locally
as a separate class (i.e., assigning each phoneme or stress marker its own
uniquely-associated output unit, leading to 62 � 3 � 65 output units); or
(ii) by representing the combinations of subclasses locally (i.e., assigning one
output unit to each possible combination of a phoneme and a stress marker,
analogous to the method used with the symbolic-learning algorithms, lead-
ing to a maximum of 62 � 3 � 186 output units: actually, the number of
combinations is 159). Although representations (i) and (ii) encode the same
tasks, they constitute different learning tasks since they lead to MFNs with
different network architectures. We present experimental results with BP us-
ing both representations to allow for comparisons between the alternatives.
Henceforth, we refer to the experiments with the separately coded subclasses
(i) as BP-SUB; the experiments with the combined classes (ii) are referred to as
BP-COM.

GS: Experiments

From CELEX we constructed on the basis of the standard word base of 77,565
words with their corresponding phonemic transcription with stress markers,
a data base containing 675,745 instances. The number of PS classes (i.e., all
possible combinations of phonemes and stress markers) occurring in this data
base of tasks is 159, which is fewer than the (Cartesian) product of the number
of occurring subclasses (62 � 3 � 186).

The algorithms applied to the GS task are BP in the variants BP-SUB and
BP-COM, IB1, IB1-IG, and IGTREE. DC is also applied to the task to provide a
baseline accuracy. Figure 5.2 displays all generalisation errors in terms of
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RESULTS SUMMARY

best algorithm IB1-IG
gen. error (%) 6.28
gen. error, words (%) 37.88

OVERLAP AND BIAS

overlap error (%) 20.10
class bias error (%) 81.16
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Figure 5.2: Results on the GS task. Results summary, bias and overlap er-
rors (left), and generalisation errors in terms of the percentage
incorrectly classified test instances of five algorithms (right).

incorrectly classified test instances, a results summary, and the overlap and
bias errors. A test instance is classified incorrectly when the phoneme part is
misclassified, or the stress-marker part, or both.

The results displayed in Figure 5.2 indicate that IB1-IG performs best on
test instances. The differences between IB1-IG and the other algorithms are
significant, the smallest difference being between IB1-IG and IGTREE ( � 
 � ��
 �
� ����� � � � � ��� � � ). There is no significant difference between the generalisation
accuracies of BP-SUB and BP-COM: apparently, the difference in architecture
does not lead to a different learning result. Encoding the output as locally-
coded subclasses or as combined classes does not influence BP’s generalisation
accuracy (which is low compared to IGTREE, IB1, and IB1-IG).

On the basis of the classifications generated by the learned models it is
also possible to compute the generalisation errors on phonemes separately.
For example, if an instance is classified by an algorithm as /b/0, while the
correct classification would be /b/1, the phoneme is classified correctly. By
investigating only the phoneme part of the combined class a separate gener-
alisation accuracy on correctly transcribed phonemes can be computed, and
can be compared to the isolated counterpart grapheme-phoneme conversion
subtask investigated in Section 3.3.

Figure 5.3 displays the results obtained with the five algorithms on the
grapheme-phoneme-conversion part of the GS task (visualised in Figure 5.3
by the error bars labelled GS). The figure also gives the generalisation er-
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Figure 5.3: Generalisation errors in terms of the percentage incorrectly tran-
scribed phonemes of five algorithms applied to the GS task, la-
belled GS, and to the isolated grapheme-phoneme conversion
task, labelled G.

ror on phonemes obtained with the grapheme-phoneme conversion sub-
task described in Section 3.3 (the error bars labelled G). The results show
that there is neither a consistent advantage nor a consistent disadvantage in
learning grapheme-phoneme conversion as a partial subtask together with
stress assignment, as compared to learning the task in isolation. Signifi-
cant disadvantages are found with BP-SUB ( � 
 � ��
 � � � � � � � � � � � � � ), BP-COM

( � 
 � ��
 � � � � � � � � � ��� � � ), and IB1-IG ( � 
 � ��
 � � � � � � � � � ��� � ). With DC, IGTREE

and IB1, the differences are not significant.
The information-gain values of the features in the GS task are less dif-

ferentiated than they are with the isolated grapheme-phoneme conversion
task (cf. Appendix D), which may explain the significantly lower accuracy
of IB1-IG on the grapheme-phoneme conversion subtask in the GS context,
since IB1-IG works best with clearly differentiated information-gain values
(Daelemans et al., 1997a). Altogether it appears that performing the stress-
assignment subtask alongside the grapheme-phoneme subtask does not help
in attaining better accuracy on the latter task.

A comparison between the isolated subtask and the partial subtask within
the GS task as done with grapheme-phoneme conversion cannot be done
properly with the stress-assignment subtask and the stress-assignment part
of the GS output, since the isolated subtask is performed on phonemes as
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phoneme string + stress markers

grapheme-phoneme conversion

letter string (word)

stress assignment

Figure 5.4: Visualisation of G/S, a word-pronunciation system containing
two parallel modules. Round-edged boxes indicate input–
output representations; sharp-edged boxes denote the modules.
The input–output mappings performed by the modules are de-
picted by arrows.

input, whereas the stress-assignment part of the GS task is performed on
letters as input. Notwithstanding the impossibility of a proper comparison
we mention that the algorithms’ accuracies on the stress-assignment part of
the GS task are consistently lower than those of the same algorithms on the
isolated subtask investigated in Section 3.5.

5.2 G/S: Performing two subtasks in parallel

A close alternative to the GS task is to perform the isolated subtasks
of grapheme-phoneme conversion and stress assignment separately. It
might be profitable to perform both tasks in parallel in a system with two
independently-operating modules. This system, G/S, is investigated below.
Figure 5.4 visualises the architecture of the system.

G/S: Experiments

The standard word base of 77,565 words with their phonemic transcription
with stress markers is taken to create two data bases, one for each subtask of
the G/S task, each data base containing 675,745 instances. The algorithms em-
ployed in the experiments are BP, IB1, IB1-IG, and IGTREE. For each algorithm, a
double 10-fold CV experiment is performed on both grapheme-phoneme con-
version and stress assignment. During each double 10-fold CV experiment the
outputs of the two modules are joined for each test instance and the accuracy
on correctly produced PSs of test words is computed. Figure 5.5 displays the
generalisation errors, obtained with these algorithms on the G/S task. Also
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Figure 5.5: Results on the G/S task. Generalisation errors in terms of the per-
centage incorrectly classified PSs, of five algorithms applied to
the isolated grapheme-phoneme conversion task (G), the stress-
assignment task with letters as input (S), and the G/S task (G/S)
(left).

displayed in Figure 5.5 are the errors on the two parallel subtasks measured
separately.

We make four observations from Figure 5.5. First, on a general level, it
displays once more the superiority of IB1 and IB1-IG over the other algorithms.
IB1-IG performs significantly better than all other algorithms; the smallest
difference between algorithms is between IB1 and IGTREE ( � 
 � ��
 � � � � � � � �
� ��� � � ).

Second, the generalisation errors of the algorithms on the G/S task are only
slightly lower than the sum of the errors of the algorithms on the two parallel
subtasks. In other words, when one of the two modules classifies an instance
incorrectly, the other module classifies that instance correctly in most cases. A
limited amount of instances is classified incorrectly by both algorithms, e.g.,
with IB1-IG not more than 3.6% of all misclassifications of PSs. This indicates
that the two subtasks are inherently different.

Third, a mirrored symmetry can be seen in Figure 5.5 between the results of
IGTREE and IB1. IGTREE’s accuracy on isolated grapheme-phoneme conversion
is better than that of IB1, while IB1’s accuracy on stress assignment is better
than that of IGTREE. This can be attributed to the difference between the feature
information-gain values of both tasks, which are large for grapheme-phoneme
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conversion, and relatively small for stress assignment (cf. Appendix D).
For the stress assignment task, IGTREE fails to build trees fit for accurate
generalisation, since they reflect a feature ordering that is not sufficiently
clear (cf. Section 3.5); for the grapheme-phoneme conversion task, IB1 fails to
recognise the fact that some letter positions are more important than others.

Fourth, low generalisation errors are produced by DC applied to the stress-
assignment subtask with letters as input. They are significantly lower than
those of IGTREE ( � 
 � � 
 � � � � � � � � � � ��� � � ) as well as of BP ( � 
 � � 
 � � � � � � � � �
� ��� � � ). The bias of guessing class 0 (i.e., the absence of stress) on top of the
overlap of 82.3% makes a relatively accurate guess for test instances (viz. 4.2%
errors). The class 0 is indeed a strong majority class: 86.1% of all instances
in the instance base are associated with it. Although stress assignment on
the basis of letter windows is learned with the highest accuracy by IB1-IG

(IB1 performing well too), the accuracy of DC shows that with less effort than
with IB1-IG, only a slight (though significant) decrease in accuracy is obtained
when the overlap between training and test instances is taken, and class ‘0’ is
produced whenever there is no overlap.

5.3 ART/S: Extending G/S with articulatory feature de-
tection

ART/S incorporates the same parallelisation of word pronunciation into G and
S; however, grapheme-phoneme conversion (G) is decomposed further into
25 partial subtasks. The combination of the 25 articulatory-feature-detection
subtasks is referred to as ART. Each partial subtask detects the presence of one
articulatory feature, with 7-letter instances as input. Since each phoneme is
characterised by a unique articulatory-feature-value vector (Subsection 2.2.2),
the output of the 25 partial subtasks can be synthesised to phoneme classi-
fications. This parallelisation of partial subtasks may be profitable when it
turns out that these subtasks are in sum easier and better learnable than the
grapheme-phoneme conversion subtask G as a whole. Figure 5.6 visualises
the architecture of the ART/S system.

The decomposition of the G subtask into articulatory-feature-detection
subtasks is also described and analysed by Sejnowski and Rosenberg (1987)
for their NETTALK model, Wolters (1997), and Dietterich et al. (1995). The latter
work describes a comparison between ID3 (Quinlan, 1986) and BP, trained
and tested on subsets of the NETTALK data (Sejnowski and Rosenberg, 1987).
Dietterich et al. (1995) conclude that with certain extensions to ID3 and BP
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Figure 5.6: Visualisation of ART/S, a word-pronunciation system contain-
ing two parallel modules. Round-edged boxes indicate input–
output representations; sharp-edged boxes denote the modules.
The input–output mappings performed by the modules are de-
picted by arrows.

that make both algorithms more sensitive to statistical (i.e., frequency-based)
properties of the data, the algorithms do not perform significantly different
in terms of generalisation accuracy (Dietterich et al., 1995).

In computational linguistics, articulatory features are used, e.g., as el-
ements in morpho-phonological rules in the GRAFON-D system (Daelemans,
1987; Daelemans, 1988). Within phonological theories, many researchers (e.g.,
Halle, 1978; Clements and Hume, 1995) assume that articulatory features are
the basic units of phonological representation. Thus, the basic assumption
underlying the ART/S system is in accordance with these ideas.

The functioning of the ART component depends on the synthesis of the
feature-detection outputs into phonemes. This synthesis is not trivial. Even
though the 25 modules may produce feature-value vectors matching phoneme
feature-value vectors perfectly, they may also produce vectors that have no
phonemic counterpart. In those non-matching cases a phoneme label has to
be searched of which the feature-value vector is in some way close to the vec-
tor produced by the 25 modules. This is done in the ART system by searching
for a vector with a minimal Euclidean distance to the output vector. Euclidean
distance, i.e., the similarity function also used in IB1, might be outperformed
by a more complex matching component. This could, for instance, be another
module (e.g., trained with IB1-IG) to map feature-value vectors to phonemes.
However, we do not investigate such extra modularisation as it would ob-
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instance left focus right
number context letter context class

1 b o o k 1
2 b o o k i 1
3 b o o k i n 0
4 b o o k i n g 0
5 o o k i n g 1
6 o k i n g 1
7 k i n g 0

Table 5.2: Example of applying the windowing encoding scheme to the
word booking, transcription /bukı � /. The class labels encode
the presence of the articulatory feature voiced in the respective
phonemes.

fuscate seriously the distinction made between the systems investigated in
Chapter 4 and in this chapter.

ART/S: Experiments

In Appendix A we have listed the articulatory-feature vectors of all consonant
phonemes (Table A.4) and vowel phonemes (Table A.5) occurring in our data,
and the names of the 25 articulatory features (Table A.3). We converted
the standard word base of 77,565 words with their phonemic transcription
with stress markers into 26 separate data bases (one for each articulatory
feature, plus one data base for stress assignment), each containing 675,745
instances. For each articulatory-feature data set, instances are created which
map to class 0 or 1. Class 0 means that the specific articulatory feature is
not present in the articulatory-feature vector of the phonemic classification of
the instance; class 1 indicates the presence of the articulatory feature in the
articulatory-feature vector of the phonemic classification. Table 5.2 displays,
as an example, the seven instances derived from the word booking, in which
the class labels denote the absence or presence of the articulatory feature voiced
(cf. Appendix A).

For each articulatory-feature-detection subtask and the stress-assignment
subtask, a 10-fold CV experiment is performed with IGTREE (the stress-
assignment subtask is the same subtask as performed with the G/S system).
None of the other algorithms are applied to the ART/S subtasks due to the
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Figure 5.7: Generalisation errors in terms of the percentage incorrectly clas-
sified test instances by IGTREE applied to the 25 articulatory-
feature-detection subtasks of ART/S.
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Figure 5.8: Generalisation accuracies of IGTREE applied to the isolated
tasks of grapheme-phoneme conversion by articulatory-feature-
detection (Art), stress assignment (S), and the ART/S task
(Art/S).

large number of experiments and the relative speed of IGTREE’s learning and
classification. Figure 5.7 displays the average generalisation accuracies of
IGTREE on all 25 articulatory-feature-detection subtasks.

All articulatory subtasks are performed with high generalisation accu-
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racy. The feature detected with the lowest generalisation accuracy by IGTREE

is central2 (1.6% errors), which is a vowel feature (cf. Appendix A). The six
articulatory features with the lowest generalisation accuracies are all vowel
features, while the nine articulatory features with the highest generalisation
accuracies are consonant features. These results indicate that classifying letter
instances as mapping to consonant phonemes is generally easier than classi-
fying instances as mapping to vowel phonemes. This reflects that in English,
the pronunciation of vowels is more difficult in general than the pronuncia-
tion of consonants due to historical changes in articulation of particularly the
English vowels (Kiparski, 1995).

Figure 5.8 displays the generalisation errors of IGTREE on phoneme classi-
fication by combining the articulatory-feature detector trees (labelled Art in
the figure) on stress assignment (which is the same subtask as performed as
part of the G/S system, labelled S in the figure), and on the combination of the
two, the output of ART/S. As in Figure 5.5, the results in Figure 5.8 indicate
that the generalisation error of the whole system (9.75%) is hardly less than
the sum of the errors of its modules (10.03%). Only 2.9% of all incorrectly
classified instances involve a false classification of both the phoneme and the
stress marker.

5.4 Chapter conclusion

We have tested three word-pronunciation systems in which the task of con-
verting letters to phonemes with stress markers is defined as performed by
one, two, or 26 independent parallel-processing modules. All generalisation-
accuracy results are summarised in Figure 5.9 in terms of generalisation errors.
The best accuracy on parallelised word pronunciation is obtained with IB1-IG

on the G/S task: 6.68% incorrectly classified PSs. This is narrowly but signifi-
cantly better than the second-best overall accuracy, that of IB1-IG on the GS task,
6.82% incorrect PSs ( � 
 � � 
 � � � � � � � � � ����� ). In both cases, the accuracy of IB1-
IG is significantly better than that of all other algorithms, the smallest differ-
ence being between IB1-IG and IGTREE on the GS task ( � 
 � ��
 ��� ����� � � � � ��� � � ).

There are no major differences between the generalisation accuracies of
the algorithms on the GS and the G/S tasks, although the two tasks appear
to be very different. This fact is surprising, and is reflected by the small
portion of instances for which both the phonemic and the stress classification
is incorrect, in both systems, with all algorithms (e.g., 4.4% for the GS task and
3.6% for the G/S task with IB1-IG): since largely different instances appear to be
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Figure 5.9: Generalisation errors of all algorithms applied to the GS, G/S,
and ART/S tasks.

problematic for the two partial subtasks, it can be concluded that learning one
of the subtasks is not helpful for learning the other subtask simultaneously.

The result obtained with IGTREE in the single experiment on the ART/S

system signifies that the decomposition into 26 partial subtasks, among which
25 articulatory-feature-detection subtasks, is not profitable for generalisation
accuracy. IGTREE’s accuracy on GS as well as on G/S is significantly better
( � 
 � ��
 �	� � � � � � � � � ��� � � , and � 
 � ��
 � � � � � � � � � � ��� � � , respectively) than on
ART/S. These results cannot be extrapolated to indicate that it is not profitable
to perform parallel articulatory feature detection altogether; the accuracy of
IB1-IG might well be better than IGTREE’s (at immense memory costs,however).

The surplus in IGTREE’s generalisation accuracy on GS over its accuracy of
G/S and ART/S can be attributed largely to IGTREE’s better generalisation ac-
curacy on the stress-assignment subtask (4.0% errors) as compared to the par-
allelised stress-assignment subtask in G/S and ART/S (4.7% errors); there is no
significant advantage in the generalisation accuracy on grapheme-phoneme
conversion in GS (3.8%) as compared to the same subtask in G/S (3.7%).

Directly relevant to the goal of the present study, viz. to investigate
whether inductive-learning algorithms can learn word-pronunciation even
when linguistically-motivated decompositions of the task are avoided, is a
comparison of GS, G/S, and ART/S to the four sequential-modular word-
pronunciation systems investigated in Chapter 4. For this reason we compare
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Figure 5.10: Generalisation errors of IGTREE on the M-A-G-Y-S, M-Y-S-A-G, M-
G-S, M-S-G, GS, G/S, and ART/S systems.

the accuracies of IGTREE on these seven systems, IGTREE being the only algo-
rithm applied to all of them. The comparison is visualised in Figure 5.10.

The first observation made from Figure 5.10 is that the lowest general-
isation errors on word pronunciation obtained with IGTREE are with the GS

system. IGTREE’s accuracy on GS is significantly better than its accuracy on the
M-G-S task ( � 
 � ��
 ��� � � � � � � � ��� � � ); all other differences have higher � -values.
However, its accuracy on the G/S task, which is relatively low due to its low
accuracy on the stress-assignment task, is significantly worse than that on
the M-G-S task ( � 
 � ��
 � � ��� � � � � � ��� � � ), yet significantly better than all other
accuracies (the closest difference being with the accuracy on the M-S-G task,
� 
 � � 
 � � � � � � � � � ��� � ).

The conclusion to be drawn from these results is that under our experi-
mental conditions, IGTREE performs best on GS, the task which assumes no
abstraction level at all and which represents the word-pronunciation task in
the most simplified form tested: a direct mapping from letter instances to
phonemes with stress markers (PSs).
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Chapter 6

Modularisation by gating

The results of Chapters 4 and 5 suggest that decomposing word pronuncia-
tion into subtasks should be performed to a limited degree, if at all, to obtain
good generalisation accuracy. The tested decompositions were all based on
linguistic expert knowledge. Thus far we have not touched upon the possi-
bility of decomposing word pronunciation into subtasks for which there is
no particular linguistic motivation. The topic of this chapter is to investigate
decompositions of the GS task of the latter type.

Decompositions of word pronunciation not based on linguistic motiva-
tions must be based on a criterion derived from the word-pronunciation
data itself; there is no direct source of knowledge on task decompositions
available otherwise. The data representing the GS task is a large set of asso-
ciations between written words and their stressed pronunciations. Linguistic
informedness allowed us earlier to decompose the word pronunciation task
into partial subtasks, e.g., by splitting the output into phonemes and stress
markers as in the G/S system (Section 5.2). A linguistically-uninformed de-
composition of the GS task cannot involve splitting the output (phonemes
with stress markers, PSs), hence involves finding a means to decompose the
GS task on the basis of the input (the letter windows).

Such a purely input-based decomposition would constitute a gating sys-
tem (Jacobs et al., 1991) in which (i) the different decomposed modules accept
the same type of input and produce the same type of output, i.e., they su-
perficially perform the same task; and in which (ii) the modules deal with
non-overlapping subsets of instances. The term gating refers to the extra
component needed to control the presentation of input to one of the mod-
ules while blocking the presentation of that input to the other modules, the

121
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so-called gating module. The task of the gating module is to decide for each
input to which of the modules it is supposed to be presented. Thus, the gating
module must be equipped with a gating criterion by which it can make these
decisions.

Decomposing the input by a certain gating criterion leads to a partition-
ing of the original data set into subsets. It can be expected that constructing
a system with an adequate gating component (i.e., a system outperforming
GS) implies deriving a gating criterion from the data by which it can divide
the data into subsets that each represent the word-pronunciation task in a
manner that is better learnable for a learning algorithm (e.g., each subset con-
tains instances that are inconsistent only with instances in the other subset;
the degree of disjunctiveness of the classes is decreased, Holte et al., 1989).
When the subsets would not have this property, e.g., when the gating module
would decide randomly, one might expect that the resulting gating system
would perform worse than GS: a smaller subset of instances may have a nega-
tive effect on generalisation accuracy as the data becomes somewhat sparser.
Empirical results are needed to confirm the expectation that a successful de-
composition of the data by gating is only possible when the decomposed
subsets are essentially different.

In this chapter we report on experiments in which three gating criteria
are tested, each in one gating system. For the sake of comparability, all three
gating criteria discern between two subsets.

1. Randomised gating is employed to test our expectation that a random
partitioning of the data set will not lead to better learnable partial word-
pronunciation tasks. It is also a test how well the word-pronunciation
task can be learned when only half of the data is available. The system,
called RND-GS, is described in Section 6.1.

2. Typicality-based gating discerns between a module trained and tested
on instances that appear to be typical word-pronunciation instances, and
a module trained and tested on the remaining instances. The notion of
typicality is borrowed from Zhang (1992) (but see also Wilson, 1972, for
earlier work in statistical pattern recognition), and the underlying idea
is that a division of instances according to some measure of typicality
or regularity (problematic as this is to determine without classification
information) may lead to subsets that are essentially different. The
system, called TYP-GS, is described in Section 6.2.

3. Occurrence-based gating divides the data on the basis of instance fre-
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quency. One subset contains instances occurring below a certain occur-
rence threshold, and the other contains instances occurring at or above
that threshold. On inspection it turns out that high-frequency instances
often contain affixes and inflections, and that low-frequency instances
generally contain morphologically simple words, e.g., singular nouns,
noun stems, and verbs. The system, called OCC-GS, is described in
Section 6.3.

The vast number of possible combinations of algorithms and (partial)
tasks, combined with time limitations, led us to explore the three types of
gating only with IB1, IB1-IG, and IGTREE, and not with BP (which learns too
slowly) and C4.5 (which is not able to construct trees on the GS task within 128
Mb computer memory).

6.1 RND-GS: Randomised gating

The RND-GS system is constructed rather easily by implementing a gating
module which decides randomly to which of the two GS modules an in-
stance is presented as training or test material. The architecture, visualised
in Figure 6.1, represents a double GS system, in which each of the modules
is presented with about half of the training instances, and about half of the
test instances. On average, both modules received about 304,000 training
instances (instead of the average full training set of about 608,000 training
instances), and about 33,500 test instances (instead of the usual 67,000). Thus
far, we have not applied any algorithm on a data set of less than the maximum
quantity provided by CELEX. Nevertheless, it has been claimed that with a
corpus size of over 20,000 words (such as used in the NETTALK experiments,
Sejnowski and Rosenberg, 1987), no significant improvements in generalis-
ation accuracy can be expected to be obtained as compared to the results
obtained with the 20,000-word corpus (Yvon, 1996). If it turns out that both
modules of the RND-GS task perform significantly below the accuracy on the
GS task (when trained with the same algorithm), we can argue that progress in
generalisation accuracy can indeed be made when increasing the corpus size
from 38,782 words (i.e., half the original CELEX word list) to 77,565 (i.e., the
full original CELEX word list). Alternatively, when both partial GS tasks can
be learned as accurately as the GS task itself, or even better, then our original
assumption that the maximal amount of available data should be used in
experiments with inductive-learning algorithms, would appear incorrect.
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phoneme string + stress markers

and stress assignment
grapheme-phoneme conversion grapheme-phoneme conversion

and stress assignment

RND

gating

letter string (word)

Figure 6.1: Visualisation of RND-GS, a word-pronunciation system contain-
ing a randomised-gating module (ellipse-shaped box) and two
parallel GS modules (sharp-edged boxes). Round-edged boxes
indicate input–output representations. The input–output map-
pings performed by the modules are depicted by arrows.

RND-GS: Experiments

The experiments on the RND-GS task, performed with IB1, IB1-IG, and IGTREE

lead to consistently worse accuracy on the word-pronunciation task than that
of the same algorithms on the GS task. The generalisation errors of the three
algorithms are displayed in Figure 6.2, as well as the errors obtained by the
same algorithms on the GS task. For all algorithms the difference between their
accuracy on RND-GS is significantly worse than on GS (the smallest difference
occurring with IB1-IG, � 
 � ��
 � � � � � � � ��� � � � � � ). None of the differences
between the generalisation accuracies on the partial subtasks and their joint
accuracies are significant for any algorithm, which is what one would expect
with approximately evenly-divided data sets of the same task.

The results show that the generalisation accuracy on word pronunciation
of all three algorithms decreases significantly when the size of the lexicon is
decreased from 77,565 to 38,782. Although a lexicon size of 38,782 word
pronunciations might appear as containing sufficient word-pronunciation
knowledge to be used in generalisation, there is still more information to
be learned from the 77,565-word lexicon with our approach. An analysis of
the overlap between training and test material with the 38,782-word data set
reveals that the overlap between training and test set (i.e., the percentage
test patterns which have a duplicate in the training set) is 73.6%, which is
considerably lower than the 82.8% overlap in the 77,565-word data set (cf.
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Figure 6.2: Generalisation errors (percentages of incorrectly classified
phonemes with stress markers) of IGTREE, IB1, and IB1-IG, applied
to RND-GS. Errors on the two randomly split subsets (labelled
1 and 2) are displayed, as well as the joint error of the whole
RND-GS system (joint). Performance on the GS task is displayed
for comparison (GS).

Subsection 2.4.2). Although a larger overlap may appear a trivial reason
for better generalisation accuracy, it shows that learning word-pronunciation
benefits from storing as much word-pronunciation instances as possible, be-
cause parts of words tend to reoccur in new, unseen words. Altogether, the
results may be interpreted as being in accordance with our earlier claim that
abstraction by data compression, i.e., forgetting, is harmful: as well as it is
harmful to forget seemingly unnecessary information during learning, it is
also harmful to throw away half the CELEX corpus. This might not hold for
larger corpora, however; corpus sizes may be reached at which doubling the
corpus size does not affect generalisation accuracy significantly.

6.2 TYP-GS: Typicality-based gating

To gate instances on the basis of their typicality, separating typical instances
from the rest, a good definition of typicality is needed. We adopt a definition
from Zhang (1992), who proposes a function to this end. Zhang computes
typicalities of instances by taking both their feature values and their classi-
fications into account (Zhang, 1992). He adopts the notions of intra-concept
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similarity and inter-concept similarity (Rosch and Mervis, 1975) to do this. First,
Zhang introduces a distance function similar to Equation 2.1 (p. 33), in which� 
 �

	

 � � ��� for all features (i.e., flat Euclidean distance), in which the dis-

tance between two instances
�

and � is normalised by dividing the summed
squared distance by � , the number of features, and in which � 
 �

	 �
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 is given

as Equation 2.2 (p. 33). The normalised distance function used by Zhang is
given in Equation 6.1.
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The typicality of an instance
�

, � � � 
 � 
 , is the quotient of
�

’s intra-concept
similarity and

�
’s inter-concept similarity, as given in Equation 6.4.
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An instance is typical when its intra-concept similarity is larger than its
inter-concept similarity, which results in a typicality larger than 1. An instance
is atypical when its intra-concept similarity is smaller than its inter-concept
similarity, which results in a typicality between 0 and 1. Around typicality
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value 1, instances cannot be sensibly called typical or atypical; Zhang (1992)
refers to such instances as boundary instances.

A problem with the concept of typicality is that it cannot be applied to test
instances, of which the classifications are not known. To handle both training
and test instances with the same criterion the typicality-based gating module
must apply a criterion based on the instances’ feature values. The solution
adopted here to circumvent this problem is to apply Zhang’s (1992) typicality
metric to the training instances (of which the classifications are known), and
extract a set of the most typical instances (e.g., the 1,000 most typical instances,
or the 10 most typical instances for each occurring classification). Given this
small subset of the most typical instances, henceforth referred to as the typical
set, the gating module can compare any instance, training or test, to the
instances in the typical set and determine whether the instance is similar to
one of the typical set’s instances. If so, it is assumed that the instance is also
typical, and is referred to the module handling typical instances. If not, the
instance can be referred to the module handling all other instances.

The gating approach in TYP-GS is computationally expensive; the time
complexity is ��
 � � 
 . It involves the computation of the typicality of all train-
ing instances, which is computationally of the same order as classification
in IB1 and IB1-IG. After this first process TYP-GS becomes efficient: the typ-
ical set is extracted straightforwardly from the typicality data, after which
the TYP-GS gating module can determine quickly to which of the two sub-
sets an instance belongs. Unfortunately, the TYP-GS approach introduces a
parameter determining the similarity threshold of new instances compared
to the instances in the typical set. We chose to let the gating module per-
form an information-gain-weighted similarity match, and refer an instance to
the module for typical instances when its similarity exceeds the sum of the
information-gain-values of the five most important features of the GS TASK,
viz. 4.50 (cf. Appendix D). Instances that match on less than five features
with an instance in the typical set are not considered to be typical. At the
same time the parameter value allows more than only duplicates of the few
instances in the typical set to be considered typical; instances are allowed to
mismatch slightly.

The architecture of the TYP-GS system is displayed in Figure 6.3.

TYP-GS: Experiments

To construct the TYP-GS system we start by creating a set of the most typical
instances. First, we compute the typicality of all training instances. We then
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Figure 6.3: Visualisation of TYP-GS, a word-pronunciation system contain-
ing a gating module (diamond-shaped box) and two parallel
GS modules (sharp-edged boxes). Round-edged boxes indicate
input–output representations. The input–output mappings per-
formed by the modules are depicted by arrows.

select for each of the 159 classes of the GS task the 10 most typical instances.
This leads to a set of 1459 instances in the typical set � . Then, the gating module
(TYP) is performed to split both the training set and the test set of each 10-fold
CV experiment in two subsets. The predetermined parameter value 4.50 in the
gating criterion leads to an average division of the original sets of instances to
subsets of typical instances containing about 32%, and subsets of remaining
instances containing about 68% of the original sets. Subsequently, IB1-IG,
IB1, and IGTREE are employed to learn both partial GS tasks. The average
generalisation errors of the three algorithms on the TYP-GS task, as well as
their respective generalisation errors on GS, are displayed in Figure 6.4.

The most important result displayed by Figure 6.4 is that there is no
negative effect nor a positive significant effect in gating the data according to
the typicality criterion in the TYP module. None of the differences between
the average generalisation errors of the three algorithms on the joint TYP-GS

and the GS task are significant (the largest non-significant difference occurring
with IB1, � 
 � � 
�� � ����� � � � � ����� ).

A somewhat counterintuitive result displayed in Figure 6.4 is that in-
stances regarded as typical are classified with the lowest accuracy by all three
algorithms. The best accuracies are obtained with the remaining subset which
is supposed to contain the remaining, less typical instances. Apparently, the
latter subset represents a part of the GS task that is easier to learn (i.e., with
�
The amount of instances in the typical set is fewer than 10 � 159 since some classes occur

fewer than 10 times.
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Figure 6.4: Generalisation errors (percentages of incorrectly classified
phonemes with stress markers), of IGTREE, IB1, and IB1-IG, ap-
plied to TYP-GS. The errors on high-typicality subsets (H), low-
typicality subsets (L), and joint error of the TYP-GS system (joint)
are displayed. Performance on the GS task is displayed for com-
parison (GS).

better generalisation accuracy) than the part represented by the typical subset.
For all three algorithms this difference is significant (the smallest difference
occurring with IB1, � 
 � ��
 � � � ��� � � � � � ��� � � ). There appears to be more am-
biguity in the subset of instances regarded as typical than in the subset of
the remaining instances. This can be interpreted as a failure of the gating
method to recognise truly typical instances. The gating method does allow
instances to be slightly different than the instances in the typical set (i.e., two
letters may differ). The seemingly small margin apparently introduces the
relatively large amount of ambiguity. Thus, assuming that instances with a
small distance to a typical instance are of the same class, appears to be wrong
for a considerable number of such instances.

Despite the fact that the TYP-gating leads to one subset being learned better
than the GS task as a whole, the accuracy of the three algorithms on the TYP-GS

task is not significantly better than their accuracy on the GS task due to the
counterweight of the error on the other subset.
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6.3 OCC-GS: Occurrence-based gating

We have pointed out earlier, in Section 3.1, that a considerable amount of
instances occur more than once in our data sets. This is not surprising, given
the fact that many words are inflections or derivations of the same stem: e.g.,
the words booking and bookings share four identical instances with the four
letters of the stem book in the focus position. Thus, stems such as book,
or work, and many other noun stems, verb stems, and adjectives tend to
occur more than once, at least twice (due to singular–plural pairs and verb
inflections listed quite consistently in CELEX). Alternatively, inflections and
derivations themselves occur in even more instances: e.g., the affix able (such
as in printable, readable, agreeable, etc.) occurs quite often, leading to the
instance able occurring 509 times in the full GS dataset.

The differences in occurrences between instances containing stems on
the one hand and instances containing inflections and affixes on the other
hand, is considerable, and is used here as the basis for gating. The gating
criterion employs an occurrence threshold parameter determining to which
of the two modules an instance must be referred. Our primary experiment
employs a threshold parameter set at 50, i.e., an instance occurring fewer
than 50 times in the training set is referred to the low-occurrence module,
and an instance occurring 50 or more times is referred to the high-occurrence
module. The value of 50 has a certain arbitrariness but appears to discern quite
sharply instances with inflections and affixes from the rest of the instances. To
illustrate this, Table 6.1 lists seven randomly-picked instances for each subset.

On inspection it turns out that the subset of instances occurring 50 times
or more in the whole data set contains almost exclusively instances of the
type displayed in the right column of Figure 6.1, viz. instances of which the
focus position is occupied by a letter of a frequently-occurring inflection or
affix such as -es, -ing, -er, -able, ness, -ive, un-, be-, and anti-.

The actual gating process for test instances is different from the gating
process for training instances. The latter type of instances are gated simply
on the basis of their occurrence within the training set; for test instances,
however, the absolute threshold occurrence value of 50 cannot be applied
sensibly since the test set is nine times as small as the training set in a 10-fold
CV setup. Faced with the choice either to use an additional threshold value for
test material derived from the value for training material (e.g., 7), or to check
whether there are duplicates of the test instance in the training set and using
the occurrence counts of the duplicate training instance, we choose the latter
method. This means that the test set is split into a subset of instances that



6.3 OCC-GS: OCCURRENCE-BASED GATING 131

example instances
in low-occurrence subset in high-occurrence subset
feature values class feature values class

b s o l v e /l/0 a n t i /æ/2
c l i q u e /i/0 c h e s /z/0

n t e r t a i /-/0 i n i n g /-/0
n e l e g a n /ı/0 a l i z e /z/0

o p e n / � � /1 n e s s /-/0
v e n g e d / � /0 t i o n /n/0
a p e s t r i /s/0 r i e r / � /0

Table 6.1: Randomly-picked example instances in the low-occurrence subset
(left, occurring fewer than 50 times) and in the high-occurrence
subset (right, occurring 50 times or more).

either have no duplicate in the training set or occur fewer than 50 times in the
training set, and a second subset of instances that have at least 50 duplicates
in the training set.

The system created for testing occurrence-based gating is named OCC-GS.
The architecture of the system is displayed in Figure 6.5, and again displays
a gating module inserted before the two GS modules. Instances are gated
through the gating module, are processed by one of the two modules, and are
joined per word at the output side of the OCC-GS system.

OCC-GS: Experiments

The gating of the data by the OCC-gating module causes the high-occurrence
training subset to contain about 11.0% percent of the total number of training
instances, and the high-occurrence test subset to contain about 10.3% of the
total number of test instances. This leads to 89.0% of the training instances
and 89.7% of the test instances to be assigned to the low-occurrence module.

On the basis of Figure 6.6 we make three observations. First, none of the
three algorithms can obtain a significantly better accuracy on OCC-GS than on
GS (the largest non-significant difference occurs with IB1-IG, � 
 � ��
 � � ��� �

� � �
� ����� ). Second, IGTREE’s accuracy is significantly worse on the OCC-GS task than
on the GS task ( � 
 � ��
 � � � � � � � � � � ��� � � ), due to a drastically low accuracy on
the partial subtask on high-occurrence instances. An explanation for the latter
low accuracy is that the information-gain values of the features of the low-



132 CHAPTER 6. MODULARISATION BY GATING

gra.-pho. conversion and stress
assignment on high-occurrence

gra.-pho. conversion and stress
assignment on low-occurrence

phoneme string + stress markers

high-occurrence

instances instances

low-occurrenceOCC
gating

letter string (word)

Figure 6.5: Visualisation of OCC-GS, a word-pronunciation system contain-
ing a gating module (diamond-shaped box) and two parallel
GS modules (sharp-edged boxes). Round-edged boxes indicate
input–output representations. The input–output mappings per-
formed by the modules are depicted by arrows.
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Figure 6.6: Generalisation errors in terms of the percentage incorrectly clas-
sified phonemes with stress markers, of IGTREE, IB1, and IB1-IG,
applied to OCC-GS. Displayed are the errors on high-occurrence
subsets (H), low-occurrence subsets (L), and joint error of the
whole OCC-GS system (joint).



6.4 CHAPTER CONCLUSION 133

occurrence instances are relatively similar, which is a notorious cause of IGTREE

to perform badly on test instances. Third, the average generalisation error of
IB1 on the high-occurrence subset is very low (viz. 5.48% incorrectly-classified
PSs), which is a remarkable contrast to the high error generated by IGTREE on
the same subset. This contrast can be explained as follows: the test set of
high-occurrence instances fully overlaps with the training set, which implies
that lookup through the full instance base of the most probable classification
will always produce a perfect match (unless there is a data-inherent class
ambiguity between two identical instances). IB1 and IB1-IG are at an advantage
when retrieving classifications by lookup, since they have stored all training
instances in memory. In contrast, the retrieval of knowledge from the tree in
IGTREE is guided by a badly-motivated ordering of features: e.g., computing
the information-gain values of the features of the high-occurrence instances it
turns out that the second-highest information-gain-value belongs to the third
letter on the right from the focus. Mismatches on this feature cause IGTREE to
halt retrieval and produce a best-guess classification from depth two of the
tree: the results indicate that these best guesses are rather inaccurate.

6.4 Chapter conclusion

Figure 6.7 summarises the generalisation errors obtained with IB1, IB1-IG, and
IGTREE on the three gating systems RND-GS, TYP-GS, and OCC-GS, and repeats,
for comparison, the generalisation errors of the algorithms on the GS task.

An explanation for the low accuracy of all algorithms on the randomised-
gating system RND-GS is that the data is made sparser when divided over
two modules. Just as it is harmful to store not all information contained in
training instances when learning the task, it is also harmful to generalisation
accuracy to forget half of the data. In a lexicon of 77,565 words, more inform-
ation on word-pronunciation appears to be present and is actually learned by
inductive-learning algorithms than in a lexicon of half the size.

Analysing the results obtained with the typicality-based-gating system
TYP-GS, it appears that estimating typicality of an instance by matching that
instance to a small set of very typical instances is a rough method that never-
theless leads to a viable decomposition. The same can be said of occurrence-
based gating in OCC-GS. However, the gating in both systems does not lead
to significant improvements over the accuracies on the GS task.

In general, we can conclude from the results that it is possible to construct
gating systems on the basis of data-oriented criteria without losing general-
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Figure 6.7: Generalisation errors in terms of the percentage incorrectly clas-
sified phonemes with stress markers, of IGTREE, IB1, and IB1-IG,
applied to RND-GS (R), TYP-GS (T), OCC-GS (O), and, for compar-
ison, GS (GS).

isation accuracy. The estimated typicality of an instance (a rather complex
measurement) and the occurrence of an instance (a simple measurement) both
provide valid gating criteria: therefore, it can be argued that both relate to
inherent features of word-pronunciation. First, instances can be roughly clas-
sified as typical or not typical. However, since results pointed out that more
generalisation errors are made on instances considered typical, as on instances
considered not typical, we refrain from claiming that Zhang’s (1992) metric
can successfully be employed to make a sharp distinction between ‘typical’
and ‘not typical’ with instances of the word-pronunciation task. Second,
counting an instance’s occurrence in a training set indicates that it is likely
that the instance incorporates a high-frequent inflection or affix. No exact
knowledge of the position of morpheme boundaries can be inferred from this
indication, but is demonstrated to be employable in a well-performing gating
system. Thus, clues on the morphological structure of words can be discov-
ered in the data straightforwardly. On the other hand it is just as viable to use
the undecomposed data for learning word pronunciation. This conclusion
applies to processing on serial computers, the default case for our study; on
parallel processing computers, automatic decomposition by gating would be
the favourable option (cf. Chan and Stolfo, 1995).



Chapter 7

Discussion

The empirical investigations described in Chapters 3 to 6 have produced a
large number of results, most of which have been analysed in the context of the
appropriate chapter’s topic. The first goal of this chapter is to summarise and
discuss the results globally in relation to the problem statement, i.e., whether
inductive-learning algorithms can learn to pronounce words with adequate
generalisation accuracy, even when the task decomposition reflects none of the
abstraction levels assumed necessary by linguistic experts. In Section 7.1 we
attempt to do this by measuring and comparing what the problem statement
refers to, i.e., generalisation accuracy. Moreover, adding to the comparative
analyses of generalisation accuracies, we provide details on memory usage
and processing speed to give a computationally balanced view of the strengths
and weaknesses of the algorithms. Although these additional analyses are
besides the focal point of answering the problem statement, they do provide
insight into the feasibility and the applicability of the general approach. In
Section 7.2 the analyses from Section 7.1 are used for proposing an assembled
hybrid word-pronunciation system which aims at combining some profitable
features from the word-pronunciation systems investigated thus far in order
to optimise generalisation accuracy.

In Section 7.3 we discuss and analyse why lazy learning (IB1 and IB1-
IG) is the best suited learning method for learning word pronunciation for
the data set under investigation and under our experimental settings, and
why abstraction by forgetting during learning is harmful. These questions
are intimately related to the question which are the characteristics of the
word-pronunication task as we formulate it that make it so amenable to lazy
learning.

135
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Sections 7.4 and 7.5 discuss the contributions, limitations, and implications
of the present study. In Section 7.4, the relations are described between our
approach and work in related areas: the interdisciplinary machine learning
of natural language (MLNL), and computational morphology and phonology.
The subsequent Section 7.5 identifies some of the limitations of the present
approach and analyses how these could be overcome. Indications are given
of potential expansions and future work.

7.1 Comparing inductively-learned word-pronunciation
systems

To answer the problem statement we must demonstrate that the inductive-
learning algorithms can learn word pronunciations adequately. In addition,
we must demonstrate that this performance remains adequate even when the
system does not reflect linguistic expert assumptions about abstraction levels.
For this demonstration we establish (i) a lower-bound generalisation accuracy
threshold for considering a generalisation accuracy adequate, (ii) an upper-
bound accuracy threshold determined by the inherent ambiguity in the data;
earlier, we have described (iii) which of our word-pronunciation systems does
not reflect any mainstream linguistic expert knowledge on abstraction levels.

First, we establish a sound lower-bound threshold for considering a gen-
eralisation accuracy adequate. This is not trivial. As Yvon (1996) notes,
high-quality text-to-speech synthesis demands that 80%–90% of the words
are pronounced flawlessly. A word’s pronunciation is flawless unless one or
more of its phonemes is incorrect � . Thus, given an average word length of 8
letters in our data, and the worst-case assumption that erroneously-classified
phonemes are uniformly distributed over words, only about 
 � � � � 
 � � � ���
classification errors on phonemes can be tolerated. In addition, it can be
concluded from the overviews of machine-learned models of word pronunci-
ations provided by Yvon (1996) that reported accuracies on words claimed to
be adequate range from about 50% to about 67% flawless word transcriptions
(e.g., Dietterich and Bakiri, 1991; Golding, 1991), and from about 90% to about
95% correctly classified phonemes (e.g., Dietterich and Bakiri, 1991; Yvon,
1996). Given these fuzzy boundaries (obtained with statistically incompara-
ble data sets) we propose to consider a generalisation accuracy on phonemes
�
Yvon’s (1996) accuracy threshold estimate does not include stress markers; it focuses on

phonemes which are of more importance in text-to-speech systems than word stress.
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of 5% or lower as adequate. This number does not refer to scores on PSs
(phonemes with stress markers), which has been our primary focus. (Most
related work indeed refers to accuracies on test phonemes;only Dietterich et al.
(1995) report on joint accuracies on phonemes and stress markers, viz. of ID3
(Quinlan, 1986) and BP applied to the NETTALK data; ID3 classifies 65.2% PSs
correctly, while BP yields 71.3% correctly classified PSs (Dietterich et al., 1995).
These accuracies are considerably lower than ours, yet the NETTALK data is
hard to compare to the CELEX data. In the original NETTALK study (Sejnowski
and Rosenberg, 1987) both phonemes and stress markers are encoded in the
network’s output, but no accuracies on the combined classifications are re-
ported. Stanfill and Waltz (1986), describing their MBRTALK system applied to a
subset of the NETTALK data, report on phonemes (86% correct test phonemes)
and words (47% correctly pronounced test words). Yvon (1996) explicitly
splits the two NETTALK subtasks and does not integrate their output.) In order
to compare our generalisation errors with the 5% threshold we need to in-
clude the generalisation accuracies on phonemes of our word-pronunciation
systems in our analysis.

Second, we determine the upper-bound accuracy threshold. The word-
pronunciation data as used in our experiments contains two types of clas-
sification ambiguity. The first type of ambiguity stems from homographs
such as read, object, and suspect, and cannot be learned successfully since
no knowledge is available to determine which of the two pronunciations is
appropriate when the word is pronounced in isolation. The second type of
ambiguity stems from the limited context captured by the letter windows
(viz. three left-context letters and three right-context letters). This blocks the
disambiguation of the pronunciation of homograph pairs such as photograph
/ photography and allergy / allergic, in which the pronunciation of the first
vowel (o and a, respectively) is determined by a letter difference occurring
more than three characters to the right. Because of both types of ambiguities,
the word-pronunciation task as represented by our data cannot be learned
with 0% generalisation errors. A sensible approximation of the theoretical
upper-bound accuracy on the word-pronunciation task can be determined
by training an algorithm on the full data set of word-pronunciation and test-
ing its reproduction accuracy on this full data set. We have performed this
experiment by training and testing IB1-IG on the full data sets of (i) the iso-
lated grapheme-phoneme conversion subtask (cf. 3.3), (ii) the isolated stress-
assignment subtask (cf. 3.5), and (iii) the GS task. We have joined the outputs
of experiments (i) and (ii) to obtain an estimate of the upper-bound accuracy
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% incorrect training
task instances phonemes stress words
G/S 3.88 1.30 2.73 24.96
GS 3.86 1.31 2.73 24.82

Table 7.1: Reproduction (upper bound) accuracy, in terms of percentage
incorrectly classified training instances, phonemes, stress assign-
ments, and words, of IB1-IG trained and tested on the full data
sets of the G/S task (i.e., the isolated grapheme-phoneme and
stress-assignment subtasks) and of the GS task.

on the G/S task. The upper-bound results on the G/S and GS tasks are listed in
Table 7.1. There is no significant difference in the accuracies of IB1-IG on both
tasks. We adopt the percentage errors made on phonemes, which is at best
1.30%, as the estimated theoretical upper-bound accuracy. Thus, we consider
an algorithm’s accuracy to be adequate when it produces less than 5% errors
on phonemes; an accuracy close to 1.30% would be considered excellent.

Third, we establish again which of our systems does not reflect in its ar-
chitecture any mainstream linguistic expert knowledge on abstraction levels.
The experiments with the different word-pronunciation systems in Chapters 4
to 6 were described in an order reflecting roughly a decreasing amount of in-
corporated linguistic expert knowledge. In two systems, viz. M-A-G-Y-S and
M-Y-S-A-G, linguistic expert knowledge is employed to determine both the de-
composition (i.e., the identification of the different subtasks) and the modular
structure (i.e., sequential). In contrast, in the four systems GS, RND-GS, TYP-GS,
and OCC-GS, neither the decomposition nor the modular structure is adopted
from linguistic expert knowledge. The remaining four systems, viz. M-G-S,
M-S-G, G/S, and ART/S, reflect a mixture of linguistic and non-linguistic (em-
pirical) motivations. Table 7.2 displays the generalisation accuracies obtained
on all word-pronunciation systems in terms of their generalisation errors on
misclassified phonemes as well as on misclassified PSs. The systems are
grouped according to their respective amount of incorporated linguistic ex-
pert knowledge; the accuracies on the M-A-G-Y-S and M-Y-S-A-G (both under
the adaptive variant) are listed at the top of Table 7.2 and the GS and gating
variants on GS are listed at the bottom.

The level of adequate accuracy, i.e., a generalisation error below 5% in-
correctly classified test phonemes, is obtained with IGTREE, IB1, and IB1-IG,
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classification algorithm
system type DC BP IGTREE IB1 IB1-IG

M-A-G-Y-S phonemes – 6.80 6.34 – –
PSs – 13.58 10.59 – –

M-Y-S-A-G phonemes – 7.89 6.78 – –
PSs – 14.26 11.29 – –

M-G-S phonemes – 6.70 3.99 – –
PSs – 12.92 7.86 – –

M-S-G phonemes – 7.60 5.43 – –
PSs – 13.56 9.27 – –

G/S phonemes 15.52 8.10 3.72 3.76 3.14
PSs 18.49 13.19 8.19 7.62 6.68

ART/S phonemes – – 5.44 – –
PSs – – 9.75 – –

GS phonemes 15.52 7.65 3.79 4.23 3.39
PSs 18.46 12.14 7.41 7.60 6.82

RND-GS phonemes – – 5.29 5.65 4.98
PSs – – 9.26 9.29 7.85

TYP-GS phonemes – – 3.82 4.13 3.34
PSs – – 7.44 7.51 6.86

OCC-GS phonemes – – 5.93 4.18 3.20
PSs – – 9.53 7.56 6.76

Table 7.2: Summary of the generalisation errors on phonemes as well as
PSs (phonemes with stress markers), obtained with all word-
pronunciation systems with DC, BP, IGTREE, IB1, and IB1-IG. Gen-
eralisation errors on phonemes considered adequate (i.e., lower
than 5%) are boxed. When an algorithm has not been applied to
a system, the corresponding cell contains ‘–’.
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on the G/S task and on the GS task. Moreover, IB1 and IB1-IG perform ad-
equately on the TYP-GS and OCC-GS tasks, IB1 performs adequately on the
RND-GS task, and IGTREE performs adequately on the M-G-S task (adaptive
variant). In terms of incorrectly classified test phonemes the lowest error is
obtained with IB1-IG on the G/S task: 3.14%, i.e., 96.86% correctly classified
phonemes. This is significantly better than IB1-IG’s accuracy on phonemes
on the GS task ( � 
 � � 
 � � � � � � � � � ��� � ), but is not significantly different from
the accuracy of IB1-IG on OCC-GS ( � 
 � ��
 � � � � � � � � � ����� ). In terms of in-
correctly classified PSs the lowest error is yet again obtained with IB1-IG on
the G/S task: 6.68%, i.e., 93.32% correctly classified PSs. This accuracy is
narrowly but significantly better than the accuracy of IB1-IG on the GS task
( � 
 � ��
 � � � � � � � � � � ��� ), but not significantly better than IB1-IG’s accuracy on
the OCC-GS task ( � 
 � ��
 � � � � � � � � � ����� ). In other words, the best adequate
accuracy is obtained with IB1-IG on the G/S task and the OCC-GS task. The
difference between this accuracy (3.14% incorrect phonemes) and the theo-
retical upper bound (1.30% incorrect phonemes) suggests that improvement
might be possible (we continue discussing the issue of accuracy improvement
in Section 7.5).

In sum, the results indicate that the word-pronunciation task can be
learned adequately by the two instance-based learning algorithms IB1 and
IB1-IG and the decision-tree learning algorithm IGTREE, when it is decom-
posed into three subtasks performed in sequence (in the M-G-S system), when
it is decomposed in two subtasks performed in parallel (in the G/S system),
and when it is not decomposed at all (in the GS task). The latter result indi-
cates that IB1, IB1-IG, and IGTREE can learn to pronounce words with adequate
generalisation accuracy even when the system architecture reflects none of
the abstraction levels assumed necessary by linguistic experts.

The results call for an analysis of the results obtained with BP and C4.5.
For the case of BP it can be claimed that the tested network architectures in
combination with the learning parameters fall short in learning the word-
pronunciation task. Our fixed experimental settings have not permitted us to
vary systematically parameters that might have had an influence on general-
isation accuracy, e.g., the number of hidden units (fixed at 50 throughout all
experiments). Analysing the performance results of BP, it cannot be concluded
that it is impossible for BP to learn word-pronunciation to an adequate level.
It appears that the presently-tested network architecture, trained under the
parameter values as described in Subsection 2.4.3, cannot represent the word-
pronunciation task adequately. Whether this is due to the lack of space (i.e.,
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exp. learning patience # hidden % incorrect
# rate momentum threshold units PSs
1 0.100 0.4 0.025 50 12.58
2 0.050 0.4 0.025 50 12.70
3 0.025 0.4 0.025 50 12.35
4 0.100 0.2 0.025 50 12.54
5 0.100 0.8 0.025 50 12.95
6 0.100 0.4 0.010 50 12.20
7 0.100 0.4 0.025 100 11.85
8 0.100 0.4 0.025 200 10.04
9 0.025 0.2 0.010 200 9.89
10 0.100 0.2 0.010 200 9.68

Table 7.3: Percentages of incorrectly classified phonemes with stress mark-
ers (PSs), computed on the first partitioning of the GS data, for ten
different parameter settings of BP trained on the GS task. Each non-
default parameter value is printed in bold. The top line denotes
the experiment with the default parameter values.

too few hidden units) or the inability to represent the data due to its specific
characteristics (e.g., sparseness or disjunctiveness of classes; cf. Section 7.3)
is unclear without further empirical investigations. Table 7.3 displays the
results obtained with performing explorative experiments on a single 10-fold
CV partitioning of the GS data, varying the learning rate, the momentum,, the
stopping criterion’s patience threshold, and the number of hidden units (cf.
Subsection 2.1.2).

The table shows that marked improvements in generalisation accuracy
can be obtained with increased numbers of hidden units. Experiments 7 and
8, in which the number of hidden units is increased to 100 and 200, respec-
tively, yield markedly lower errors than the default-setting experiment 1 and
the other experiments 2 to 6. Changing learning rate, momentum, and the
stopping criterion’s patience threshold value affect generalisation accuracy to
a small degree. The best accuracy is obtained with leaving the learning rate
at 0.100, setting the momentum at 0.2, setting the patience threshold to 0.010,
and setting the number of hidden units to 200 (experiment 10). Nevertheless,
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an error of 9.86% incorrectly classified PSs is still quite high compared to the
average percentages of errors made by IGTREE (7.41%), IB1 (7.60%), and IB1-IG

(6.82%). At the cost of very long training phases � , increases in hidden units
may lead to further improvements in generalisation accuracy. The fact that
our study is performed with non-optimal parameter settings (which allowed
us to perform the experiments in the given time) is a combined weakness
of our approach in which parameters are set once for many tasks, and of BP

for having a large amount of parameters, some of which have considerable
impact on the accuracy of BP on the GS task as shown. Further empirical in-
vestigations are needed to determine whether algorithms such as Quickprop
(Fahlman, 1988) or Cascade-correlation (Fahlman and Lebière, 1990) may aid
in optimising generalisation accuracy or processing speed.

The C4.5 algorithm has not been applied to the GS task as it failed to build a
decision tree within the practical limitations of 128 Mb of computer memory.
C4.5’s implementation

�

incorporate some computational inefficiencies (Daele-
mans et al., 1997a) that could be avoided without affecting the performance
of the algorithm. Hence, the results obtained with C4.5 should be interpreted
as a general failure of C4.5 to deal with the word-pronunciation task, and in-
dicate that a more efficient, less memory-consuming implementation of C4.5
would be appropriate.

7.1.1 Additional comparisons between algorithms

While the problem statement only mentions generalisation accuracy as the
criterion to measure success in reaching the goal of learning word pronuncia-
tion adequately, it is relevant from a computational point of view to compare
the algorithms on other features as well. This section presents three additional
analyses of the algorithms: (i) the asymptotic complexities of the algorithms
as regards classifier construction, classifier storage, and instance classifica-
tion; (ii) their actual memory requirements on the GS task, and (ii) the time
needed to learn the GS task and to classify instances of that task.

�
Experiment 10 took 12 days to converge on a SUN Sparc Classic, which is very long for a

single-partition experiment.
�

These statements refer to release 7 of C4.5, but apply also to release 8. However, a new
commercial version of C4.5, C5.0, is able, by certain memory optimisations, to learn the GS

task with the same parameters as investigated in this thesis. C5.0’s generalisation error on test
instances is 7.53%, which is slightly but significantly worse than IGTREE ( ��� 	������ 	 �
	���
���� � � � 
 );
the average tree built by C5.0 contains 25,663 nodes.
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algorithm classifier construction classifier storage classification
BP � 
 � ����� 
 � 
 ����� 
 � 
 ����� 

IB1 ��
 � 
 � 
 � � 
 � 
 � � 

IB1-IG ��
 � 
 ��
 � � 
 ��
 � � 

IGTREE � 
 �

�
� 
�� 
 � 
 � 
 � 
 � 
 �

�
� 
�� 
 


C4.5 � 
 �
�
� 
�� 
 � 
 ��
 � 
 � 
 �

�
� 
�� 
 


Table 7.4: Asymptotic complexities (in � 
 
 notation) of classifier construc-
tion, classifier storage, and classification of BP, IB1, IB1-IG, IGTREE,
and C4.5.

Asymptotic complexity

An analysis of the asymptotic complexities of BP, IB1, IB1-IG, IGTREE, and C4.5
as employed in our study provides an indication of the differences in the
worst-case performance of the five algorithms, before we turn to their ac-
tual performance in terms of memory requirements and processing speed.
In Table 7.4 we have gathered for each of the five algorithms the order of
complexity of (i) classifier construction (i.e., the computational processing
cost of training an MFN with one hidden layer, constructing an instance base,
or inducing a decision tree), (ii) classifier storage (i.e., the memory cost of
storing a trained MFN, an instance base, or an induced decision tree), and (iii)
classification (i.e., the computational processing cost of classifying instances)
(cf. Daelemans et al., 1997a). In the table, � denotes the number of instances
in the training set;

�
denotes the number of features; � denotes the average

branching factor of IGTREE and C4.5 (i.e., the average number of values rep-
resented at arcs stemming from a node);

�
represents the number of classes;

and
�

represents the number of hidden units in the MFN trained with BP. For
our data, � is very large; when processing or storage is dependent of � , it can
be said to be less favourable than processing or storage independent of � for
our data.

Classifier construction is particularly favourable in complexity for IB1 and
IB1-IG, which only need to store � instances in memory. IGTREE and C4.5 both
need � 
 �

�
� 
�� 
 � 
 when values are alphabetically sorted (so that binary search

can be implemented). Classifier construction in BP is less favourable, since it
is not only dependent of � and

�
but also of

�
and

�
. Complexity analyses
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of classifier storage show, in reverse, that BP is not dependent of � , while the
other four algorithms are. IGTREE and C4.5 need to store, in the worst case, �
(the maximal number of leaves) � 
 
 � � � 
 � 
�� � � 
 
 (the maximal number of
non-terminal nodes), hence ��
 � 
 . IB1 and IB1-IG store for all � all feature-value
information; hence � 
 � � 
 . Classification of instances is dependent of � in IB1
and IB1-IG; instance classification in BP, IGTREE, and C4.5 is independent of �
and therefore favourable (for our data).

Memory requirements

Table 7.5 lists the average memory requirements of all tested algorithms on
all reported word-pronunciation systems, as well as on the isolated subtasks
reported in Chapter 3. The results in the Table clearly indicate the magnitude
of the difference, for all systems, between the memory requirements of the
instance-based (lazy) learning algorithms IB1 and IB1-IG (and DC) on the one
hand, and those of the two decision-tree learning algorithms IGTREE and C4.5,
and the connectionist BP algorithm on the other hand. First, BP’s modest mem-
ory requirements contrast strongly with the other algorithms’ requirements,
especially those of DC, considering that for most tasks BP performs signifi-
cantly better than DC. Second, the decision-tree-learning algorithms IGTREE

and C4.5 require comparable amounts of memory, except for the tasks involv-
ing grapheme-phoneme conversion; in the latter cases C4.5 failed to induce
trees within 128 Mb working memory. Third, the lazy-learning algorithms
require the full training sets to reside in memory, which amounts to 4,751 Kb
per module.

The results suggest that adequate accuracy may be reached with a limited
amount of compression during learning; when compression is too high, gen-
eralisation accuracy becomes lower than adequate. For example, the network
used by BP to learn the GS task occupies 97.8% less memory than the instance
bases used by IB1 and IB1-IG. The decision tree constructed by IGTREE occupies
84.0% less memory. The amount of compression by BP leads to significantly
worse generalisation accuracy, falling below the level of adequate accuracy,
while the amount of compression obtained with IGTREE still leads to adequate
accuracy. The latter applies also to the G/S task: the compression obtained by
IGTREE is 90.4%. Thus, the present results suggest that compression to about
90% of the memory needed by IB1 and IB1-IG is possible without causing
generalisation accuracy becoming inadequate.
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memory (Kb) occupied by algorithm
system DC BP IGTREE C4.5 IB1 IB1-IG

M (isol.) 4751 59 379 438 4751 4751
A (isol.) 4751 59 305 374 4751 4751
G (isol.) 4751 71 547 7078 4751 4751
Y (isol.) 4751 88 179 120 4751 4751
S (isol.) 4751 88 326 370 4751 4751
M-A-G-Y-S (adap.) – 461 2691 – – –
M-Y-S-A-G (adap.) – 379 2957 – – –
M-G-S (adap.) – 222 1556 – – –
M-S-G (adap.) – 222 1868 – – –
GS 4751 105 759 – 4751 4751
G/S 9502 130 913 – 9502 9502
ART/S – – 2984 – – –
RND-GS – – 1240 – 4751 4751
TYP-GS – – 780 – 4751 4751
OCC-GS – – 765 – 4751 4751

Table 7.5: Summary of the average memory requirements (in Kb) needed for
learning all isolated word-pronunciation subtasks, and all word-
pronunciation systems, measured with DC, BP, IGTREE, C4.5, IB1,
and IB1-IG. When an algorithm has not been applied to a system,
the corresponding cell contains ‘–’.
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Processing speed

While memory usage provides insight into the amount of effort put into com-
pressing the full data base, ranging from none with IB1 and IB1-IG to consider-
able in BP, it does not provide indications what effort is spent on classification
of test instances (i.e., the classification effort discussed in Section 2.1). When
measuring the time used by both the training phases and the test phases of
all algorithms, indications for both types of effort become available.

We provide an illustration by visualising the time used by DC, BP, IGTREE,
IB1, and IB1-IG for (i) learning the GS task, and (ii) classifying the GS test
instances, in Figure 7.1. The GS task is taken as example task since it is the
most relevant task in view of the problem statement. The figure shows that
the effort spent by the algorithms on learning and classification, respectively,
indeed correspond, when visualised as coordinate points using logarithmic
scales, with the estimated positions of the algorithms in the two-dimensional
space spanned up by the learning-effort dimension and the classification-
effort dimension as displayed in Figure 2.1 (p. 24). The figure furthermore
illustrates the large difference between the summed times needed by IGTREE

for learning and classification, viz. about 3020 seconds, as compared to IB1
and IB1-IG, viz. about 15,000 and 16,000 seconds, respectively. In total, IGTREE

uses about 20% of the time needed by IB1 and IB1-IG. Finally, the results
with BP show that this connectionist-learning algorithm is exceptionally slow
on the GS task compared to the other algorithms (the training phase takes
about 400,000 seconds). The lengths of learning and classification times were
averaged over measurements performed on a Pentium 75Mhz running Linux.

Figure 7.1 bears a resemblance with Figure 2.1: the coordinates of the
algorithms in Figure 7.1 are approximately in the same location as the circles
circumscribing the same algorithms in Figure 2.1. The latter figure was used
to illustrate that each of the three groups of algorithms is located near the
end of the learning-effort dimension or the classification-effort dimension.
Figure 7.1 can be taken to support the positions of the algorithms as depicted
in Figure 2.1 since the points of Figure 7.1 fall within the corresponding
ellipses of Figure 2.1.
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Figure 7.1: Visualisation of the time used by DC, BP, IGTREE, IB1, and IB1-IG on
learning the GS task (x-axis), and classifying the GS test instances
(y-axis).

7.2 Undiscovered sections in word-pronunciation-sys-
tem space

Having established which algorithm performs best on which task investi-
gated, it is still impossible to derive a general statement about what would be
the optimal decomposition and architecture for a word-pronunciation system.
There might well be word-pronunciation systems which perform better than,
e.g., IB1-IG trained on the G/S task. In this study we have not focused (i) on
optimising systems on speed, or memory requirements, (ii) on constructing
modular systems of which the modules are trained with different algorithms,
and (iii) on constructing modular systems combining sequential and parallel
processing. Although we have argued our choices, it is clear that our study
covered a small section of ‘word-pronunciation-system’ space.

In this section we test three word-pronunciation systems that combine
some of the findings presented earlier in this thesis. First, we present G-
S, which performs grapheme-phoneme conversion and stress assignment in
sequence, and is learned by IB1-IG. Second, we present GS-COMBINER, which
combines the outputs of IB1, IB1-IG, and IGTREE on the GS as input to a combiner
module, trained by IGTREE. Third, we present GS-ARBITER, which combines
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the outputs of IB1, IB1-IG, and IGTREE, and the input of the original GS instances
as input to an arbiter module, trained by IGTREE.

G-S

To demonstrate (and issue a warning) that our coverage of the word-
pronunciation-system space has not lead to finding the optimal system, we
describe the construction of one particular word-pronunciation system not
tested earlier: G-S, which we train with IB1-IG under the adaptive variant.
Figure 7.2 displays the G-S architecture. This task combines three earlier
findings:

1. There is a small but significant utility effect in incorporating the output
of the grapheme-phoneme subtask as input to the stress-assignment
subtask, when trained with IGTREE under the adaptive variant (cf. Sec-
tion modular-summary).

2. Learning a word-pronunciation subtask using the output of a module
having performed another subtask appears to be performed best under
the adaptive variant (cf. Section 4.5).

3. IB1-IG performs consistently better than IGTREE on all (sub)tasks investi-
gated.

Learning the G-S task with IB1-IG involves constructing a two-modular
system of which each module occupies 4,751 Mb. The total memory require-
ments of 9,502 Mb for the instance bases, combined with the relatively slow
classification process of IB1-IG, makes the G-S system not optimal in terms of
memory requirements or speed. The three reasons mentioned for testing the
G-S system are all related to generalisation accuracy. G-S therefore represents
an example exploration in accuracy optimalisation. The reasons mentioned
are empirical reasons, but there is also linguistic expert knowledge involved
in G-S: expert knowledge is reflected in (i) the decomposition of the two sub-
tasks, and (ii) the accuracy of grapheme-phoneme conversion before stress
assignment, as argued for by Allen et al. (1987).

Trained under the adaptive variant, i.e., on the collected test output of
the grapheme-phoneme-conversion module, IB1-IG obtains a generalisation
accuracy of 6.03% incorrectly processed test instances, 3.14% incorrectly clas-
sified phonemes, 3.05% incorrectly classified stress assignments, and 33.79%
incorrectly processed test words. Table 7.6 lists these accuracy results as well
as those obtained on the GS task and the G/S task.
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stressed-phoneme string

letter string (word)

grapheme-phoneme conversion

phoneme string

stress assignment

Figure 7.2: Visualisation of G-S, a word pronunciation system containing
two modules. Curved-edged boxes indicate input–output rep-
resentations; sharp-edged boxes denote the two modules. The
input–output mappings performed by the modules are depicted
by the arrows.

The errors produced on stress assignments in the G-S task are considerably
lower than those obtained in the GS and G/S tasks. In the latter two tasks, stress
assignment was performed on the basis of letter windows. In G-S, the input
consists of (partly erroneous) phonemes. The partly-erroneous input accounts
for a worse generalisation accuracy compared to the stress assignment subtask
performed in isolation (2.50%, cf. section 3.5), but a better accuracy on stress
assignments based on partly erroneous phonemes and morpheme boundaries
in the M-G-S system obtained with IGTREE (4.10%). Altogether, the system is
able to perform significantly better in terms of the percentage incorrectly pro-
cessed test instances than IB1-IG on the GS task ( � 
 � � 
 � � � ��� � � � � � ��� � � ),
and better than IB1-IG on the G/S task ( � 
 � ��
 � � � � � � � � � � ��� � � ). These re-
sults demonstrate that improvement in generalisation accuracy is possible by
combining empirical findings on test material established earlier. However,
combining empirical findings obtained on test material in performing new
experiments on the same test material violates the constraints on using test
material as described in Subsection 2.4.3 (cf. Salzberg, 1995). Therefore, the
results obtained with the G-S system are biased and cannot be compared,
strictly speaking, with the results presented earlier.

GS-COMBINER and GS-ARBITER

In Chapter 6 we introduced the three gating systems RND-GS, TYP-GS, and OCC-
GS. Performing classification tasks in gating systems bears resemblance to
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% incorrect test
task instances phonemes stress words
GS 6.82 3.39 3.77 38.88
G/S 6.68 3.14 3.79 36.71
G-S 6.03 3.14 3.05 33.79

Table 7.6: Generalisation accuracies of IB1-IG on the G-S task (bottom line) as
compared to those obtained on the GS and G/S tasks (top lines).
Results are listed on the percentage incorrectly classified test in-
stances, phonemes, stress assignments, and test words.

recent developments in machine-learning and connectionist-learning research
in which multiple classification algorithms are trained on subsets of the full
data set. For example, in bagging, boosting, and arcing algorithms (Breiman,
1996a; Freund and Shapire, 1996; Breiman, 1996b) the full data set is resampled
during a number of iterations, while learning algorithms are trained on each
sample subset (which may be much smaller than the full data set) and the
total system’s output is generated by combining the outputs of the individual
learning algorithms. Using combined outputs of classifiers as input to the
same classification task can be viewed as a classification task in itself: systems
in which this idea is implemented are generally referred to as voting systems
(Chan and Stolfo, 1995; Chan and Stolfo, 1997)). Analogous developments
can be seen in the research into ensembles of neural networks (for an overview,
cf. Sharkey, 1997).

In our gating approach the output is not combined; rather, each instance
is processed by only one of the modules. Breiman (1996a) and Kai and Boon
(1997) express the hypothesis that the combination of the outputs of partially-
trained modules will lead to better performance than the non-decomposed
system only when the classifications of the different modules are in some way
essentially different (e.g., showing a high variance, or showing little overlap
in misclassified test instances, Chan and Stolfo, 1997).

We investigate two word-pronunciation systems in which the outputs of
IGTREE, IB1, and IB1-IG, trained on the GS task, are combined and used as
input to a voting module trained to determine the eventual GS classifications
on the basis of the (partly erroneous) classifier outputs. The first system,
GS-COMBINER, applies a combiner approach to voting (Chan and Stolfo, 1995),
meaning in our case that a combiner module is placed in sequence after three
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stressed-phoneme string

Figure 7.3: Visualisation of GS-COMBINER (left) and GS-ARBITER (right), two
word pronunciation voting systems. Curved-edged boxes in-
dicate input–output representations; sharp-edged boxes denote
the modules trained by specified algorithms; triangular modules
denote the voting modules. Input–output mappings performed
by the modules are depicted by the arrows.

modules trained by IGTREE, IB1, and IB1-IG, respectively, taking as input only
the (partly erroneous) classification outputs of the three modules. The second
system, GS-ARBITER, applies an arbiter approach to voting (Chan and Stolfo,
1995). GS-ARBITER introduces an arbiter module which, apart from taking
the outputs of the three algorithms as input, also takes the original letter-
window instances as input. While the combiner module of GS-COMBINER

merely combines outputs without knowledge of the actual letter-window
instances, the arbiter module of GS-ARBITER decides which is the best choice
for classification given all information. Figure 7.3 displays both systems
schematically.

The combiner module of GS-COMBINER and the arbiter module of GS-
ARBITER are trained with IGTREE, the algorithm combining small induced
models (decision trees) with reasonably fast learning and fast classification.
For GS-COMBINER, we constructed a data base of 675,745 instances consisting
of three features: the respective classifications of IGTREE, IB1, and IB1-IG on
all test instances of the GS task. Analogous to the data sets constructed for
the modular systems trained under the adaptive variant (cf. Chapter 4), the
instance base is a concatenation of the algorithms’ output on test material.
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Figure 7.4: Generalisation errors in terms of the percentage incorrectly clas-
sified phonemes with stress markers, of the voting systems
GS-COMBINER (GS-C) and GS-ARBITER (GS-A), both trained with
IGTREE. For comparison, the left part shows the classification
errors of IGTREE, IB1, and IB1-IG on the GS task; these classifiers
serve as input to both voting systems.

The combiner module is trained in a 10-fold CV setup on this data. The
information-gain values of the three features in the data reflects the relative
performance differences between the three algorithms on the GS task. The
more accuracte the algorithm, the higher the information-gain value of the
algorithm: for IGTREE (7.41% generalisation error), it is 4.74; for IB1 (7.60%) it is
4.68; for IB1-IG (6.82%) it is 4.78. The arbiter module of GS-ARBITER was trained
in the same setup as the combiner module of GS-COMBINER, with the exception
of the instances in the data: apart from the three algorithms’ classifications,
the instances also include all letter-window information. Figure 7.4 displays
the generalisation errors produced by GS-COMBINER and GS-ARBITER.

The results displayed in Figure 7.4 show improvements in generalisation
accuracy of both GS-COMBINER and GS-ARBITER over the performance of IB1-IG

on the GS task. Both differences are significant; for GS-COMBINER, � 
 � ��
 �
� � � � � � � � � � � � ; for GS-ARBITER, � 
 � � 
 � � � � � � � � � � � � � � . The generalisation
accuracy of GS-ARBITER is also slightly but significantly better than that of
IB1-IG on the G-S task ( � 
 � ��
 � � ��� � � � � � ����� ). In terms of incorrectly classified
phonemes, GS-ARBITER produces only 2.88% errors. In terms of incorrectly
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classified words, however, GS-ARBITER produces more errors (35.80%) than
G-S (33.79%).

The results obtained with GS-COMBINER and GS-ARBITER suggest that the
outputs of the three classifiers on the GS task differ to such a degree that the
combiner and arbiter modules, trained with IGTREE, are able to repair success-
fully errors made by either of the three algorithms. To analyse this capability
of the two voting modules, we counted the numbers of repaired classification
errors for different combinations of classification errors, on the performance
of both modules on the first partitioning of their 10-fold CV experiments. The
results of this analysis, displayed in Table 7.7, show that both voting sys-
tems are able to resolve a considerable amount of disagreements between
the classifications of IGTREE, IB1, and IB1-IG; for example, the major part of
the disagreements in which one of the three classifiers produces an incorrect
classification is resolved by both voting systems. An important difference
between GS-ARBITER and GS-COMBINER in that the former is able to repair a
considerable amount of cases in which all three algorithms produce an incor-
rect classification. Apparently, GS-ARBITER is able to successfully detect that
all three algorithms are incorrect by being able to inspect the letter-window
instances; the top row of Table 7.7 shows that this ability of GS-ARBITER also
accounts for a small amount of errors on instances for which all three classi-
fications already produced correct classifications.

The results obtained with the two voting systems GS-COMBINER and GS-
ARBITER indicate that voting can be profitable for learning word-pronunciation.
The three algorithms involved in the two voting systems appear to classify
sufficiently differently. The arbiter approach is able to generalise from the
algorithms’ classifications and the original letter-window instances in such a
way that generalisation error is decreased markedly.

7.3 Data characteristics and the suitability of lazy learn-
ing

The comparison of generalisation accuracies (Section 7.1) witnesses a consis-
tent superiority of instance-based (lazy) learning. We have concluded that
lazy learning is well suited for learning to pronounce written words. In this
section we analyse the characteristics of the word-pronunciation task allow-
ing lazy learning to be successful. Previous research on � -nearest neighbour
( � -NN) classification, the basis of IB1 and IB1-IG, has addressed a number of
limitations and disadvantages of the approach (Breiman et al., 1984; Aha et al.,
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algorithm correct # remaining errors
IGTREE IB1 IB1-IG # disagreements GS-COMBINER GS-COMBINER

Y Y Y 0 1 373
Y Y N 995 100 160
Y N Y 882 23 111
N Y Y 345 41 66
Y N N 232 129 108
N Y N 354 308 188
N N Y 370 267 170
N N N 3441 3428 2743

total 6619 4297 3919

Table 7.7: Absolute numbers of instances leading to eight possible combina-
tions of correct (Y) / incorrect (N) classifications of IGTREE, IB1, and
IB1-IG on the GS task, measured on the first partitioning of the data
base used for training GS-COMBINER and GS-ARBITER, and the num-
bers of remaining errors on these eight types of (dis)agreements
by both voting systems.

1991; Aha, 1992). Breiman et al., 1984 mention six disadvantages of � -NN

classifiers and derived algorithms such as IB1 (the disadvantages are listed in
italics, followed by a comment on the applicability of the disadvantage to our
study in regular font):

1. � -NN classifiers are computationally expensive since they save all training
instances in memory. This applies clearly to our study, although our
computational resources were sufficient for performing experiments on
systems with one or two modules.

2. They are intolerant of feature noise. Interpreting this as intolerance of
noisy instances, as Aha et al. (1991) do, this applies to our data (cf.
Section 1.3). However, the apparent success of lazy learning suggests
that this is either no disadvantage here, or it is the major source of the
otherwise small amount of errors produced with lazy learning applied
to our data.

3. They are intolerant of irrelevant features. This applies to IB1, but not to IB1-
IG insofar as information-gain weighting can detect irrelevant features
in our data.
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4. They are sensitive to the choice of the algorithm’s similarity function.
This is true, but information-gain weighting is a relatively unbiased
(and, for our data, successful) data-oriented method for estimating
weights of features. Many other data-oriented similarity functions exist
(Wettschereck et al., 1997).

5. There is no natural way to work with nominal-valued features or missing
features. This applies to our nominal-valued data, but we show that our
distance function, combined with information-gain weighting, can lead
to adequate similarity matching and consequent adequate accuracy.

6. They provide little usable information regarding the structure of the data.
Indeed, no direct insight can be gained from performance results of IB1
and IB1 into inherent data characteristics.

In the following we propose and perform a procedure for discovering
the characteristics of our data that make it especially suitable for lazy learn-
ing, and enable lazy learning to soften or avoid the disadvantages noted by
Breiman et al. (1984). First, we describe such a procedure proposed by Aha
(1992). Then, we propose a procedure to be performed on our data, inspired
by that of Aha (1992).

Aha (1992) proposes a method for discovering which characteristics of the
data relate to the applicability of certain learning algorithms to this data. The
method is comprised of three phases:

1. In the first phase, an artificial data set is constructed (Benedict, 1990)
mimicking the investigated (real-world) data set in terms of learnability.

2. In the second phase, algorithms are trained and tested on the artificial
data set of which the characteristics are gradually shifted.

3. In the third phase, a factorial analysis in the form of rule induction
(Clark and Niblett, 1989) is applied to the experimental outcomes of the
second phase, yielding rules such as IF (the number of training instances
is larger than x) AND (the number of relevant features is larger than y) THEN
algorithm A will produce significantly better generalisation accuracy than
algorithm B (Aha, 1992).

This method assumes that when one has found an artificial data base mim-
icking the learnability of the original data base, that the known characteristics
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of that data base largely overlap with those of the original data base. How-
ever, as Aha (1992) notes, when assembling an artificial data base on the basis
of known characteristics, one may miss out on an undiscovered yet essential
characteristic of the original data set.

Inspired by Aha’s (1992) method we propose a data-characterisation pro-
cedure applied to the GS data. The procedure aims to discover which primary
characteristic of the GS data allows IB1 and IB1-IG to perform adequately. The
procedure is limited in that it does not operate on the basis of an artificial data
set of which the characteristics are well known. Rather, it operates on data
sets in which one aspect of the original GS instance base is distorted. The rea-
soning behind this limited procedure is that apart from the surface attributes
of the instance base (e.g., number of features, values per feature, instances,
classes), we have thus far not gathered any indications on the number of clus-
ters (i.e., groups of nearest-neighbour instances belonging to the same class),
the number of disjunct clusters per class (i.e., the numbers of separate clusters
per class), and the numbers of prototypes per class (Aha, 1992). Prototypes
can be defined as centroids, i.e., vectors at the centre of clusters in instance
space (viz., the space spanned up by all possible feature-value vectors repre-
senting the task) (Benedict, 1990). We have no indications on the number of
prototypes in our data, and can only refer for comparison to studies on other
data indicating that “IB1 performs well for highly disjunctive target concepts”
(Aha, 1992, p. 6). The more prototypes an instance base contains, the more
disjunct class clusters exist: the general expectation is that IB1 will perform
generally better than eager-learning algorithms on such data since it retains
all information concerning disjuncts, no matter how small, while decision
trees (notably those implementing pruning) tend to overgeneralise and miss
out on disambiguating small disjuncts (Holte et al., 1989; Ali, 1996; Danyluk
and Provost, 1993; Provost and Aronis, 1996; Aha, 1992, provides some care-
ful modifications of this expectation). Our working assumption here is, by
abduction, that our data contains many small disjuncts, since IB1 and IB1-IG

perform better than IGTREE, C4.5, and BP. Apart from investigating the char-
acteristic that favours lazy learning over eager learning, we also aim to collect
indications on the characteristic that favours IB1-IG over IB1.

The procedure is structured as follows:

1. We construct two data sets mimicking the original data base represent-
ing the GS task, in which one aspect of the data is altered:

(a) In the first data set, called GS-PERM, we permute randomly for each
word all letters along with their corresponding PSs; i.e, for each
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word, all letter-phoneme correspondences are shuffled. GS-PERM

distorts the context around focus letters, but leaves the correspon-
dences between the focus letters and phonemes intact.

(b) The second data set, called GS-RAND, randomises for each word all
letters. While the phonemic transcription with stress markers is
maintained, all letters of the word are randomly picked from the
letter alphabet. This distorts all letter-phoneme correspondences,
and makes the relation between spelling and pronunciation fully
arbitrary (not unlike ideographic writing systems).

2. IGTREE is applied to the GS, GS-PERM, and GS-RAND data sets, rendering
for each data set a decision tree. For each tree, the following statistics
are computed:

(a) the numbers of leaves at each level of the tree (i.e., the numbers of
clusters discerned by IGTREE at different levels) and

(b) for each level of the tree, the average numbers of instances repre-
sented by each leaf (i.e., the sizes of clusters discerned by IGTREE at
different levels).

3. Leave-one-out experiments (Weiss and Kulikowski,1991) are performed
with IB1 and IB1-IG on the GS, GS-PERM, and GS-RAND data sets. In each
experiment, for each instance the number of nearest neighbours of the
same class is determined, i.e., the number of friendly nearest neigh-
bours of an instance. Because IB1 and IB1-IG employ different distance
functions (cf. Subsection 2.1.3), their average numbers of friendly neigh-
bours may differ and may reveal why IB1-IG performs better than IB1
does.

Searching for small disjuncts

Measures 2(a) and 2(b) attempt to provide broad indications of cluster sizes
by counting disambiguated instances at different levels in trees constructed
by IGTREE. During the construction of a tree IGTREE is assumed to be disam-
biguating as many instances as possible, as early in the tree as possible. The
strategy of IGTREE is to detect clusters of instances and representing them by
paths ending at leaf nodes. When IGTREE can, for example, construct a path
ending in a leaf node at level three, representing the disambiguated classifi-
cation of 100 instances, it has discovered three feature-value tests bounding a
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average # instances per leaf
level GS GS-PERM GS-RAND

1 5 6.91 � 2.73 5 6.91 � 2.73 0 – –
2 172 15.56 � 3.72 145 3.20 � 1.16 0 – –
3 3413 16.02 � 2.87 4084 3.96 � 1.22 413 1.35 � 0.10
4 18842 8.08 � 0.98 75727 1.42 � 0.13 436860 1.01 � 0.01
5 32017 5.46 � 0.74 250061 1.11 � 0.06 126803 1.01 � 0.00
6 22565 3.85 � 0.18 123941 1.10 � 0.02 65133 1.01 � 0.01
7 24208 6.36 � 0.95 94068 1.33 � 0.25 46417 1.02 � 0.02

Table 7.8: Numbers of leaves and average numbers of instances represented
by these leaves (with standard deviations), for each of the seven
levels in trees constructed by IGTREE on the GS, GS-PERM, and GS-
RAND instance bases.

cluster of instances of size 100 of the same class. The assumption underlying
the clustering of instances at leaf nodes in IGTREE is that information gain,
computed over the full instance base, provides an adequate approximation
of the ordering of features to be investigated for maximising the numbers of
disambiguated instances as high as possible in the tree

�

. This assumption
constitutes a bias in any conclusion drawn from measures 2(a) and 2(b).

Table 7.8 lists the numbers of leaves and average numbers of instances
represented by those leaves, per level, produced by IGTREE on the full GS, GS-
PERM, and GS-RAND instance bases. A straightforward difference between the
trees generated on the full GS instance base on the one hand, and the GS-PERM

and GS-RAND instance bases on the other hand is found in the total numbers
of leaves: 101,222 (GS), 547,995 (GS-PERM), and 675,626 (GS-RAND). GS-PERM

and GS-RAND represent distortions of the GS task that cause IGTREE to build
very large, cumbersome trees. The average number of instances represented
by leaves at all levels is considerably larger for the GS tree than for the GS-
PERM and GS-RAND trees. Two attributes of the GS tree appear salient: first,
at levels 2 and 3 of the GS tree, IGTREE can form clusters of (on average) 16

�

C4.5 arguably provides a better approximation than IGTREE since it adjusts the information-
gain ordering of features at every non-ending node in order to maximise the numbers of
instances that can be disambiguated as high in the tree as possible. Unfortunately, it was not
feasible to run C4.5 on the GS task given our maximal computational resources.
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instances of the same class. Thus, by deciding on two or three feature-value
tests, approximately 3,500 clusters of size 16 (on average) can be identified;
this clustering accounts for a considerable amount of compression. Second,
at deeper levels in the GS tree cluster size decreases, though on average it
remains at three instances or more. For example, on level 5, clusters contain
on average approximately five instances (the small standard deviations in
Table 7.8 indicate that the average number of instances per cluster per level is
quite stable). In contrast, paths in the GS-PERM tree from level 4 onwards, and
in the GS-RAND tree altogether, represent only single instances. IGTREE fails
to detect clusters in the GS-PERM and GS-RAND data and resorts to assigning
unique paths to almost all instances (about 98% of the GS-PERM instances,
and virtually 100% of the GS-RAND instances). We conclude from the results
discussed here that, under the assumption that IGTREE performs an adequate
clustering of the data (which is biased by the specific choice of information-
gain feature ordering), the instances in the GS instance base are clustered in
small disjuncts of size three to sixteen, on average. It is likely that given
enough training instances, one of the minimal two or three instances of a
disjunct are stored in memory – each of these single instances can then serve
as the perfect match for th instances in its disjunct in the test material.

Daelemans (1995, 1996a, 1996b) argues that within instance bases rep-
resenting language tasks such as the ones studied here, pockets of exceptions
can be found; “Exceptions tend to come in ‘families’ ” (Daelemans, 1996a,
p. 5). Our analysis with IGTREE suggests that these families typically have
three or more members. We join Daelemans in his statement that a learning
algorithm applied to a language tasks that can be rephrased as classification
tasks should focus on storing all instances because of this specific feature.
Therefore, storing all instances is a favourable property of IB1 and IB1-IG; ap-
proaches which stop storing information below a certain utility threshold,
ignoring small disjuncts, such as decision-tree learning with pruning (Quin-
lan, 1993; Holte et al., 1989) lack this property. Nevertheless, there is still need
for an argument why IGTREE and C4.5 without pruning perform worse than
IB1 and IB1-IG, because both decision-tree algorithms expand their trees to
represent any small disjuncts. We assert that this is because both algorithms
assume a feature ordering that is too rigid. A mismatch on a feature-value
test early on in tree traversal blocks any other feature-value tests at deeper
levels that may match the test instance and lead the way to a small disjunct
with the possibly correct classification. Indeed, the information-gain values
of the outer context letters in the window computed for the GS task, display
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little differences (cf. Appendix D) – a bad motivation for ordered testing of
feature values. To avoid such mismatches, at least two algorithmic solutions
other than the one offered by IB1-IG appear salient; (i) a hybrid algorithm mix-
ing IGTREE and IB1-IG, in which IGTREE is invoked up to the point where tree
construction becomes badly motivated, after which IB1-IG is performed on the
remaining informationally-insignificant features � , and (ii) lazy decision trees
(Friedman, Kohavi, and Yun, 1996), in which a test instance is classified by
searching an instance base and constructing an imaginary decision tree path
specifically tuned to this instance, attempting to avoid matches on features
not relevant to the instance.

As a aside, we remark that the slight increase in leaves and instances per
leaf at level 7 of the GS and GS-PERM trees displayed in Table 7.8, reflects that
at that level, certain ambiguities are not resolved. Level 7 contains an extra
number of instances not yet disambiguated that need further feature-value
tests or are inherently ambiguous. This can partly be resolved by expanding
the window (cf. Section 7.5).

From the perspective of the task it is useful to gather information on
the content on the clusters to assess if they reflect an inherent character-
istic of the data. Dealing with approximately 95,000 clusters and 675,000
instances distributed over these clusters, averaging analyses may provide
adequate indications answering this question, although such analyses will
ignore possibly many interesting subtle facts. We performed two averaging
analyses, focusing on the correlation between clusters of instances represented
by leaves of the GS-tree, and (i) morphological-segmentation classification of
these instances, and (ii) syllabification classification of these instances. An
instance is marked by a morphological segmentation when its classification
in the morphological-segmentation subtask (cf. Section 3.1) is ‘1’, e.g., the
instance ooking , derived from the sample word booking in which the i marks
the beginning of the inflectional morpheme ing. Analogously, an instance
is marked by a syllable segmentation when it maps to class ‘1’ in the syl-
labification subtask with letters as input, such as the instance booking, in
which the k is marks the beginning of the syllable /kı � /. For each cluster
of instances we computed the distribution of morphological-segmentation
classes and syllabification classes of these instances in the instance bases of
the respective subtasks. The bias underlying this analysis is the assumption

�
An instantiation of this hybrid IGTREE/IB1-IG idea is the TRIBL algorithm described by

Daelemans, Van den Bosch, and Zavrel 1997b. In the context of this thesis, TRIBL is future
research.
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boundary marker on focus
morphological syllabic

level absent (‘0’) present(‘1’) absent (‘0’) present (‘1’)
1 100.0 0.0 100.0 0.0
2 76.5 23.5 92.7 7.3
3 75.8 24.2 86.8 13.2
4 80.8 19.2 75.1 24.9
5 76.1 23.9 77.6 22.4
6 59.9 40.1 47.8 52.2
7 53.0 47.0 54.4 45.6

instance base 71.0 29.0 68.8 31.2

Table 7.9: Percentage distribution of morpheme and syllable boundaries (‘0’,
absent, or ‘1’, present) occurring at the focus position of instances
represented by leaves, for all levels of the tree constructed by
IGTREE on the GS instance base. The bottom line lists the overall
distributions of the markers in their respective instance bases.
Percentage distributions larger than the overall distributions are
printed in bold.

that there might be a global correlation between clusters at different levels
in the tree, and morphological and syllabic markedness of instances in these
clusters. We restrict the notion of markedness to refer to the presence of a
non-null morphological-segmentation or syllabic classification of the focus
letter of each instance. Morphological-segmentation and syllabic classifica-
tions (‘0’ and ‘1’) are taken from the instances bases for the respective isolated
subtasks (cf. Subsections 3.1 and 3.4) The results of the analyses are displayed
in Table 7.9. For each level, the percentage morphological and syllabic clas-
sifications are computed of instances represented by leaves at that level. For
comparison, the bottom line of Table 7.9 lists the overall distribution of classes
in the full instance bases of morphological segmentation and syllabification.

Globally, the results in Table 7.9 indicate that at the highest levels in the
tree, most instances represented by leaves represent a letter window in which
the focus letter is not at the initial position of a morpheme or a syllable. The
deeper in the tree, the more instances represent letter windows of which the
focus letter is in initial position of a morpheme or syllable. This is witnessed by
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an above-average number of instances mapping to class ‘1’ at the bottom two
levels. Both morphologically and syllabically-marked instances occur rela-
tively more frequently in instances represented at the bottom two levels in the
tree than they do in the full instance base. From these results we can conclude
that class ambiguity can be resolved by taking into account less context for
within-morpheme and within-syllable instances than for instances marking
boundaries. These results indicate the relevance of morphemes and sylla-
bles in word pronunciation (Allen et al., 1987; Daelemans, 1987; Daelemans,
1988; Coker et al., 1990; Vroomen and Van den Bosch, to apear). We argue
that it is an argument for considering morphological and syllabic inform-
ation as good descriptions of the structure of words and pronunciations, but
not necessarily for considering them as necessary abstraction levels in word
pronunciation. Our overall negative findings on including morphological
segmentation and syllabification in word pronunciation (Chapter 4), together
with our experiments on occurrence-based gating (correlating roughly with
morphological structure, Section 6.3) suggest that morphological and syllabic
structure can be left implicit in the mapping from spelling to pronunciation.
As far as morphological and syllabic structure is necessary for determining
word pronunciation, the word-pronunciation data itself will reflect it and
learning algorithms are capable of tracing it when necessary (to an adequate
degree), as Table 7.9 indicates for the case of IGTREE.

An alternative method of detecting clusters, less biased than the information-
gain ordered cluster detection by IGTREE, can be implemented using IB1. We
performed leave-one-out experiments (Weiss and Kulikowski, 1991) in which
we computed for each instance in the GS, GS-PERM, and GS-RAND data sets a
ranking of the 100 nearest neighbours in terms of their distance to the left-
out instance. Within this ranked list we count the ranking of the nearest
neighbour of a different class than the left-out instance. This rank number
minus one is then taken as the cluster size surrounding the left-out instance.
If, for example, a left-out instance is surrounded by three instances of the
same class at distance 1 (i.e., one mismatching feature-value), followed by a
fourth nearest-neighbour instance of a different class at distance 2, the left-
out instance is said to be in a cluster of size three. The results of the three
leave-one-out experiments are displayed graphically in Figure 7.5.

The � -axis of Figure 7.5 denotes the numbers of friendly neighbours found
surrounding instances; the � -axis denotes (in logarithmic scale) the occur-
rences of friendly-neighbour clusters of particular sizes. There are distinct
differences between the three scatter plots representing the three data sets.
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Figure 7.5: Scatter plots of numbers of friendly-neighbour clusters of sizes
0 to 99, as found by IB1 on the GS, GS-PERM, and GS-RAND data
sets.

With the GS-RAND data set most friendly-neighbour clusters are of size 0 (i.e.,
the nearest neighbour is associated with another class), some are of size 1 to
5, and accidentally clusters of 6, 7, or 8 friendly neighbours are found. This is
to be expected in a data set of which the feature values are randomised: there
are no similar feature-value vectors associated with the same class, unless
in accidental cases. With the GS-PERM data set, the occurrence of clusters is
not very different from those in the GS-RAND data set. Somewhat less ran-
dom feature-value vectors occur in the permuted GS-PERM data set; there are
accidental friendly-neighbour clusters with more than ten instances. Both
scatter plots contrast strongly with the scatter plot computed for the GS data
set. Within the GS data, IB1 finds thousands of friendly-neighbour clusters of
sizes 1 to 60, and still hundreds of clusters containing more than 60 friendly
neighbours. Combining these results obtained with IB1 with those obtained
with IGTREE, we can conclude that the GS data contains many thousands of
small disjunct clusters containing about three to about a hundred instances
each.

As an aside, we note that we did not perform empirical tests with IB1 and
IB1-IG using � -NN with ��� � . Therefore we cannot claim that 1-NN is the most
optimal setting for our experiments. The results discussed in this section
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average #
friendly neighbours

data set IB1 IB1-IG

GS 15.01 25.58
GS-PERM 0.50 3.41
GS-RAND 0.11 0.11

Table 7.10: Average numbers of friendly (identically-classified) nearest
neighbours of GS instances, measured with IB1 and IB1-IG.

suggest that the average ‘ � ’ actually surrounding an instance is larger than � ,
although many instances have only one or no friendly neighbour. The latter
suggests that a considerable amount of ambiguity is found in instances that
are highly alike; matching with � -NN with ��� � may fail to detect those cases
in which an instance has one best-matching friendly neighbour, and many
near-best-matching instances of a different class. Empirical tests are needed
to estimate the effects of larger � .

Information gain: adapting the distance function to the data

Having collected broad indications for the degree of disjunctive clusteredness
of the data, which generally favours lazy learning over greedy approaches
(Holte et al., 1989), we now turn to locating a relevant characteristic of our
data favouring IB1-IG over IB1. An argument for including IB1-IG in our study
was that IB1-IG is equipped with a weighting function sensitive to relevance
differences of individual features (cf. Subsection 2.1.3). To compare IB1
and IB1-IG we performed the same leave-one-out experiment with IB1-IG as
described above to compute the numbers and sizes of friendly-neighbour
clusters discerned by IB1. Table 7.10 displays the average size of friendly-
neighbour clusters found by IB1 and IB1-IG in the three data sets (averaged
over all instances per data set).

Table 7.10 provides three relevant indications. First, comparing IB1 and
IB1-IG on the GS task, it can be seen that larger clusters of friendly neighbours
are found with IB1-IG than with IB1. Thus, by weighting the distance function
(cf. Eq. 2.1), IB1-IG rescales the instance space in such a way that instances of
the same class become surrounded with more instances of the same class as
compared to when the similarity function of IB1 is used. The advantage of the
information-gain-weighted distance function supports the assumption un-
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derlying IB1-IG (cf. Subsection 2.1.3), that information gain is a good method
for estimating feature relevance. Second, the results in Table 7.10 on the GS-
PERM data set indicate that with IB1 the average friendly-neighbour cluster
size is smaller than 1, i.e., most nearest neighbours are of a different class.
With IB1-IG, however, the average friendly-neighbour cluster size is 3.41: on
average each instance is surrounded by over 3 instances of the same class.
It appears that perturbing the context around the focus letter causes the flat-
weighted distance function of IB1 to lose the ability to discern (on average)
between instances of the same class and instances of different classes. In con-
trast, because the information-gain-weighted distance function of IB1-IG still
recognises that the focus letter is highly relevant to classification, IB1-IG still
rescales the instance space making instances of the same class (on average)
more similar to each other than instances of different classes. Third, when the
correspondence between focus letters and phonemes is lost and information
gain cannot detect any relevance differences between features, which is the
case in the GS-RAND data set, both IB1 and IB1-IG fail to measure differences in
average distance between instances of the same class and between instances
of different classes.

In sum, the feature values of word-pronunciation instances, computed on
the full data set, display outspoken relevance differences (the middle letter
of a window being by far the most relevant for classification); by adapting
the distance function in IB1 to this intrinsic global characteristic of the data,
IB1-IG employs an empirically good estimate of distance between instances.
Indirectly, together with the adequate accuracy of lazy learning on word
pronunciation, this shows that the features used for representing the input for
the word-pronunciation task, i.e., fixed-sized windows of letters, are adequate
for lazy learning. There appears to be no direct need to construct meta-
features to group together clusters in instance space (Aha, 1991). Word-
pronunciation can be learned adequately by merely counting matching letters
within a bound, local context (cf. Section 7.5 for a discussion on extending
the context).

7.4 Related research in machine learning of morpho-
phonology

The present study cannot be viewed but in relation with the growing inter-
est in applying machine-learning algorithms to natural language process-
ing (NLP) tasks (e.g., Powers and Daelemans, 1991; Oflazer and Somers,
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1996; Daelemans et al., 1997c)
�
. Recent applications of ML algorithms to

morpho-phonological tasks do not show an exclusive use of instance-based
(lazy) learning algorithms such as IB1 or IB1-IG. Rather, our study and re-
lated work (Stanfill and Waltz, 1986; Lehnert, 1987; Wolpert, 1990; Weijters,
1991; Van den Bosch and Daelemans, 1992; Van den Bosch and Daelemans,
1993; Daelemans and Van den Bosch, 1992a; Van den Bosch et al., 1995; Daele-
mans and Van den Bosch, 1997; Wolters, 1997; Wolters and Van den Bosch,
1997) are the only known reports on applying instance-based learning algo-
rithms to morpho-phonological tasks. However, there is a considerable body
of work on applying eager learning algorithms (e.g., decision-tree learning,
connectionist learning) to morpho-phonological tasks.

The classical NETTALK paper by Sejnowski and Rosenberg (1987) can be
seen as a primary source of inspiration for the present study; it has been so for a
considerable amount of related work. Although it has been criticised for being
vague and presumptuous and for presenting generalisation accuracies that
can be improved easily with other learning methods (Wolpert, 1990; Weijters,
1991; Yvon, 1996), it was the first paper to investigate grapheme-phoneme con-
version as an interesting application for general-purpose learning algorithms.
The NETTALK data has reappeared in many studies on machine-learning algo-
rithms (Stanfill and Waltz, 1986; Lehnert, 1987; Dietterich et al., 1995; Weijters,
1991) and has reached the status of a benchmark problem (Murphy and Aha,
1995). A recent study by Yvon (1996) still bases its conclusions partly on
the learnability of grapheme-phoneme conversion by a machine-learning al-
gorithm on results obtained with the NETTALK data. Our study is based on
a corpus of about four times the size of NETTALK, and our investigation of
learning the word-pronunciation task based on half our corpus with the RND-
OCC task (Section 6.1) showed a marked decrease in generalisation accuracy.
The NETTALK data appears too small to be used in an experiment aiming
at obtaining adequate generalisation accuracy on grapheme-phoneme con-
version. Empirical tests would be needed to investigate whether different
corpora of English word pronunciations yield comparable results when sizes
are comparable to the CELEX or NETTALK corpora.

Examples of similar experiments performed with connectionist learning
algorithms on morpho-phonological data, aimed at estimating and optimis-
ing generalisation accuracy or demonstrating the efficacy of connectionist

�

For more details on machine learning of natural language, the reader is referred to
the SIGNLL web page of collected links at URL http://www.cs.unimaas.nl/signll/signll-
www.html.
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learning, are the aforementioned Dietterich et al. (1995) and Wolters (1996)
(both on grapheme-phoneme conversion), Brunak and Lautrup (1990) (on En-
glish hyphenation), and Ling (1994) (on past-tense learning of English verbs,
a task closely related to phonology). An example of modelling explicit lin-
guistic expert knowledge is provided by Gupta and Touretzky (1992), who
investigate the learnability of stress in nineteen languages, comparing the
learnability of an explicit encoding of metrical phonological theory (Dresher
and Kaye, 1990) and the learnability of an unbiased task definition. Gupta and
Touretzky (1992) conclude that both approaches behave similarly, and assert
that neither can be regarded as providing insight into the intrinsic structure
of stress in the tested languages. Psycholinguistically-motivated models of
reading aloud are most commonly trained and tested on relatively small cor-
pora (of NETTALK size or less) (Coltheart et al., 1993; Norris, 1993; Bullinaria,
1993; Plaut et al., 1996). Their goal is generally to model human behaviour,
which imposes very tight restrictions to the material used (e.g., small data set,
monosyllabicity, fixed numbers of letters and phonemes, no complex stress,
no morphological structure).

Although the goals of these models are diverse they do share some com-
mon assumptions, of which we mention explicitly the windowing method.
This method can be found with nearly all afore-mentioned studies, except for
the tasks which take whole words as input (Ling, 1994; Gupta and Touretzky,
1992). An interesting counterargument, put forward by Yvon (1996), is that
an inductive-learning approach to grapheme-phoneme conversion should
be based on associating variable-length chunks of letters to variable-length
chunks of phonemes. This chunk-based approach contrasts with the window-
ing method which supposes fixed-length chunks of letters being associated
to single phonemes. The chunk-based approach is shown to be applicable,
with adequate accuracy, to several corpora, including corpora of French word
pronunciations and, as mentioned above, the NETTALK data (Yvon, 1996). The
approach appears to be sensitive in a negative sense, however, to morpholog-
ical complexity in languages such as English, and appears to be particularly
sensitive to sparse data, to which instance-based learning is less sensitive
(Wolters and Van den Bosch, 1997). Future experiments on larger amounts of
data are needed to investigate the potential advantages or disadvantages of
the chunk-based approach over our phoneme-based approach.
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Related issues in computational morphology

Mainstream work in computational morphology focuses on developing mor-
phological analysers of which the processing is based on finite-state automata,
operating in combination with a lexicon containing all morphemes of the
target language (Koskenniemi, 1984; Allen et al., 1987). After providing
an overview of the mainstream work in computational morphology, Sproat
(1992) notes that (i) the state of research in computational morphology in 1992
calls for future work on models less dominated than the mainstream work by
finite-state multiple-level morphotactics (as their complexity is unfavourable,
unless parallel machines could be used (Koskenniemi and Church, 1988)).
Moreover, he notes that (ii) more work needs to be done in the area of mod-
elling human morphological processing than done in the mainstream work
(Sproat, 1992). Finally, he remarks that (iii) morphological analysis in some
generation systems (e.g., text-to-speech conversion) should be integrated bet-
ter with phonology than it is done in mainstream work (Sproat, 1992). Our
study addresses Sproat’s (1992) concerns (i) and (iii) directly, although partly.
We investigate morphological analysis as a straightforward one-pass seg-
mentation task (Section 3.1) and address the incorporation of morphological
analysis as a subtask of word pronunciation (Chapter 4).

Related issues in computational phonology

The development of phonological theory has mainly diverged on how to rep-
resent phonological rules. Chomsky and Halle’s (1968) book The Sound Pattern
of English (SPE) marked the first decade of generative phonology, a framework
in which phonological rules are represented as linearly ordered, context-
sensitive rules. However, the complexity of the placement of stress markers
calls for non-linear processing, which has led to the development of two
theories of non-linear phonological processing: autosegmental phonology
or two-level phonology (Goldsmith, 1976; Bird, 1996) and metrical phonol-
ogy (Liberman and Prince, 1977) (cf. Subsection 2.2.2). Bird (1994) discerns
four strands of current work in computational phonology: (i) providing for-
mal frameworks in which phonological theories can be expressed; (ii) imple-
menting computer programmes to be used by phonologists for developing
and testing phonological theories; (iii) developing models for simulating hu-
man (phonological) behaviour, to simulate the acquisition of phonological
knowledge, and to present phonologists with useful generalisations about a
certain body of phonological data; and (iv) integrating computational mod-
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els of phonology with computational models of syntax and speech. The
strand most relevant to our work is the third (Dresher and Kaye, 1990; Gasser
and Lee, 1990; Gupta and Touretzky, 1992; Ellison, 1993; Daelemans et al.,
1996; Gillis et al., 1995; Daelemans et al., 1994a), which use the actual phono-
logical data as occurring in daily usage or in dictionaries as the basis for
acquiring (inducing) models of phonology. The approach taken here is a rep-
resentative of this strand of work, with the exception that most of the cited
work is biased towards incorporating linguistic expert knowledge in the input
and/or output of the investigated phonological tasks, while we have focused
on avoiding the incorporation of linguistic expert knowledge maximally to
test how much expert knowledge may be left implicit in the data.

7.5 Limitations, extensions, and future research

Inductive language learning spans a huge experiment space of learning algo-
rithms and language tasks of which the present study has explored a subspace.
We have argued the relevance of searching this particular subspace in Chap-
ters 1 and 2. We mention interesting and relevant extensions of the present
approach in the experimental space. We group the overview of extensions on
the basis of some general limitations of our approach.

Extending the window

Windowing is limited to seven letters per instance, for all experiments de-
scribed in this thesis. We assumed this context would be sufficient for attain-
ing adequate generalisation accuracy, and named this the locality assumption.
The information-gain values computed for the seven positions in the window
indicated that for tasks such as grapheme-phoneme conversion and GS, the
outer context letters received rather low information-gain weights (cf. Ap-
pendix D). However, a notable amount of error stems directly from the fact
that a context of three left characters and three right characters does not suffice
to disambiguate between alternatives (consider, for example, the two differ-
ent phonemes and stress markers associated with the first o of photograph
and photography). The errors on test material arising from these ambiguities
were measured to range between 1.25% (with morphological segmentation)
and 2.09% (with the GS task), accounting for about 27% (with morphological
segmentation) to 31% (with GS) of the total number of generalisation errors.
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% incorrect
task instances phonemes stress words
GS, 3-1-3 3.86 1.31 2.73 24.82
GS, 4-1-4 2.10 0.58 1.61 14.63
GS, 5-1-5 1.20 0.26 0.98 8.85
GS, 6-1-6 0.71 0.12 0.61 5.48

Table 7.11: Reproduction (upper-bound) accuracy, in terms of percentage
incorrectly classified instances, phonemes, stress assignments,
and words, of IB1-IG trained and tested on the full data set of the
GS task using 3-1-3, 4-1-4, 5-1-5, and 6-1-6 windows, respectively.
window, respectively.

Although the pronunciations of homographs such as read, suspect, and
object cannot be disambiguated by an approach that investigates isolated
words, a major part of the ambiguities caused by the insufficient window
width can be solved by extending the window to the maximal width needed
for the most exceptional case. Extending the window can be incorporated
easily with the different algorithms, but the consequences of extending the
window differ per algorithm. The reasonably compact MFNs to which BP

is applied become larger with a larger window, and BP can be expected to
spend considerably more time learning. For the instance-based algorithms, a
window expansion would imply a serious (i.e, exponential) setback in classifi-
cation speed. For IGTREE and C4.5, however, only the paths that are ambiguous
at depth seven of the tree are expanded to disambiguate the mapping, thus,
both algorithms can be expected to suffer only marginally from expanding
the window.

To provide indications of the effects of extending the window width, we
analyse the theoretical upper-bound accuracy on the GS task (computed as
described in Section 7.1, with IB1-IG). We performed experiments on the GS

task using nine-letter, eleven-letter, and thirteen-letter windows, respectively
with four, five, and six letters on either side of the focus letter. The result-
ing upper-bound generalisation errors measured after training and testing
on all instances, phonemes, stress assignments, and words in the data set
are listed in Table 7.11. The accuracy results suggest strongly that improve-
ment is indeed possible by extending the window. The results also indicate
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that the amount of true ambiguity in the data occurring with homographs
is quite small compared to the amount of ambiguity that can be resolved by
expanding the window, causing at most 5.48% incorrectly processed words,
i.e., approximately one fourth of the upper-bound errors on the GS task using
a seven-letter window. Empirical tests (10-fold CV experiments) are needed
to determine whether the extension of the window may indeed bring gener-
alisation accuracy further under the 5% lower threshold error on phonemes,
and under 20% error on test words.

Word pronunciation in texts

Word pronunciation is, in our definition, the pronunciation of words in iso-
lation. We have not addressed word pronunciation in textual context. En-
coding words in textual context can, however, easily be incorporated into
the approach (for an example, cf. Weijters and Hoppenbrouwers, 1990), by
letting the window run across text. Instead of filling the left and right context
of each word with word boundary markers (’ ’), the window incorporates
both a part of the left-hand-side word, the single space between the words,
and a part of the right-hand-side word. Within textual context, pronuncia-
tions of words are sometimes blurred by phonemic alternations at the word
boundaries, similar to phonological processes occurring at certain morpheme
or syllable boundaries (cf. Subsection 2.2.2).

While the approach can be copied effortlessly, the task changes dramat-
ically. We treat our dictionary words as occurring only once, which is a
limitation given the fact that there are large differences in the frequencies
of word tokens in text. Word frequencies may play an important role in
learning word pronunciation: shorter words tend to reoccur more often than
longer words (Zipf, 1935); many of the most frequent words in English are
pronounced irregularly (Andrews, 1992). Moreover, text generally contains
a considerably larger portion of monomorphemic words than a dictionary,
as any comparison between a regular piece of text with a list of dictionary
entries readily shows.

Applying our approach in a text-to-speech synthesiser aimed at pronounc-
ing text would, of course, require a data base of transcribed text. Empirical
tests are needed to determine whether word pronunciation in text is learned
with better generalisation accuracy than isolated word pronunciation.
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Incorporating previous classifications in the input

In the present approach classification of instances is independent of the clas-
sification of other instances, e.g., belonging to the same word. The approach
allows for instances to be classified in any order, including the most obvious
order, viz. from left to right (the direction of reading). When classifica-
tion is explicitly and strictly limited to the left-to-right order, the possibility
arises to incorporate previous classifications into the input of all instances
of a word, except into the first, leftmost instance (Weijters, 1990; Daelemans,
1996, p.c.). In the example of grapheme-phoneme conversion, one could im-
plement the classification of a phoneme as done on the basis of seven letters
and three previously classified phonemes. Since the phonotactics of English
are quite strict as regards the adjacency of phonemes (cf. Subsection 2.2.2),
it can be expected that the previously classified phonemes would be relevant
in determining their next neighbour and that they will receive quite high
information-gain values.

A potential drawback of the approach is the possibility of cascading errors
occurring with test words; i.e., when one test instance is classified incorrectly,
its incorrect classification is present in the input of the three consecutive in-
stances, which may lead to continuously cascading errors due to continuously
incorrect input. Adamson and Damper (1996) trained a recurrent Jordan neu-
ral network (Jordan, 1986) on the grapheme-phoneme task for British English;
the network copies its output (i.e., the phoneme) into the input layer. Exper-
iments showed worse generalisation accuracy by the Jordan network than
by a non-recurrent MFN trained with BP on the same data (Adamson and
Damper, 1996). Alternatively, for German, Jordan networks have been shown
to improve accuracy over BP’s (Rosenke, 1995). Again, empirical tests will
be needed to investigate in detail the potential advantages and drawbacks of
this extension for neural networks and surely also for the decision-tree and
instance-based learning methods.



Chapter 8

Conclusions

When the task of learning English word pronunciation is defined as learning
to map fixed-size letter strings to phonemes with stress markers, it can be
learned with adequate success by inductive-learning algorithms. Three of the
tested algorithms were able to attain adequate accuracy: the two instance-
based learning algorithms IB1 and IB1-IG, and the decision-tree algorithm
IGTREE.

By defining word pronunciation as a mapping from fixed-size letter strings
to phonemes with stress markers, i.e., as a one-pass classification task, we
have avoided the explicit implementation of abstraction levels assumed nec-
essary by mainstream linguistics to perform the task. Our demonstration of
inductive-learning algorithms attaining adequate accuracy with the one-pass
task definition implies that the linguistic abstraction levels are not needed
explicitly in an adequately-performing word-pronunciation system (by our
definition of adequate accuracy).

Sequential and parallel decomposition

Generalisation accuracy results with implementing linguistically-motivated
decompositions of the word-pronunciation task, in Chapter 4, showed that a
decomposition of the word-pronunciation task in five sequentially-coupled
subtasks (as done in existing word-pronunciation systems) led to a worse
generalisation accuracy than a decomposition of the task into three subtasks:
it was demonstrated that the two pairs of graphemic parsing and grapheme-
phoneme conversion, and syllabification and stress assignment, could best
be integrated in single tasks when learned by the IGTREE learning algorithm
under the adaptive variant.

173
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Parallel decompositions of the word-pronunciation task were tested in
Chapter 5, leading to the conclusion that grapheme-phoneme conversion and
stress assignment, when learned independently by inductive-learning algo-
rithms, perform better jointly than the sequential-modular systems investi-
gated in Chapter 4. Two word-pronunciation systems with parallelised sub-
tasks showed to be particularly well learnable; better than the best-performing
sequential-modular system of Chapter 4: one system in which the two sub-
tasks of grapheme-phoneme conversion are performed in parallel and one
in which these two subtasks are defined as one single task, i.e., the one-
pass mapping of instances of letter strings to phonemes with stress mark-
ers. The adequate accuracy of the former system, G/S, demonstrates that
grapheme-phoneme conversion and stress assignment are fairly indepen-
dent tasks. More importantly, the latter system, GS, proved the point that
the word-pronunciation task can indeed be performed adequately when no
linguistically-motivated abstraction level is assumed (even no explicit dis-
tinction between two parallel tasks) between those of letters and phonemes
with stress markers.

In Chapter 6, the idea was elaborated that the one-pass word-pronunciation
task GS could be learned better when the available training data was split ac-
cording to a data-based criterion, and processed by a gating system. Minor
improvements were indeed attained with two criteria, the first isolating a
subset of assumed typical instances from the other instances, and the second
isolating a subset of frequently-occurring instances. However, the tests failed
to show that a data-based decomposition of the task could lead to significant
accuracy improvements over those obtained with the non-decomposed task.

Exploring the minimisation of expert bias

While avoiding some abstraction levels assumed necessary by mainstream
linguistic experts has proven profitable for the generalisation accuracy of
inductively-learned word-pronunciation systems, the conclusion cannot be
that linguistic theory is superfluous in building word-pronunciation sys-
tems. After all, a significant improvement over the best accuracy was ob-
tained by constructing a system, G-S, which explicitly decomposes grapheme-
phoneme conversion and stress assignment and places them in sequential
order. This system, of which the subtasks were learned by the IB1-IG algo-
rithm, demonstrates that explicit linguistic abstractions can indeed be pro-
ficient for obtaining high-accuracy performance given the CELEX data. The
generalisation accuracy of this particular system, 3.14% incorrectly classified
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phonemes, 3.05% incorrectly classified stress markers, and 33.79% incorrectly
produced words, approaches high-quality accuracy demanded by industrial
text-to-speech standards. Alternatively, two voting systems (GS-COMBINER

and GS-ARBITER), which do not incorporate expert knowledge but combine
the outputs of inductively-learned word-pronunciation systems to resolve,
by voting over them, some of the errors made by these systems, are also
successful in optimising generalisation accuracy. GS-ARBITER obtains the best
overall performance reported in this thesis in terms of classified phonemes
(2.88% incorrectly classified phonemes).

Discussions on attaining high-quality accuracy put aside, the main conclu-
sion that can be drawn from the present study is that a reasonable amount of
knowledge assumed necessary by mainstream linguistics and by developers
of mainstream text-to-speech synthesis systems, is not needed explicitly for a
word-phonemisation system to perform adequately. As far as abstractions are
really needed for adequately performing word pronunciations, they can be
learned, albeit implicitly and probably not in the form they are theoretically
formulated, by induction from learned examples. The best-performing algo-
rithms capable of producing adequate accuracy, IGTREE, IB1, and IB1, merely
establish appropriate estimates of similarity between newly-encountered let-
ter strings and stored instances of letter strings associated with pronunciation
knowledge, gathered earlier in a learning phase. This leads us to conclude
that the analogy principle as described in Chapter 1 can indeed be success-
fully implemented. The similarity function that is empirically demonstrated
to be appropriate is based on two functions: one counting identical letters
between two word-pronunciation instances, and one (in IGTREE and IB1-IG)
assigning different weights (determined by information-theoretic estimates)
to letter matches.

From a linguistic perspective our study has shown that it is a viable
method of research to view the word-pronunciation task from the bottom
up, i.e., to construct models of the task on the basis of the data itself, and
investigate how far this bottom-line approach can reach. The ideas of De
Saussure on the generic analogy principle and of Bloomfield on induction
as a means to discover knowledge on language have been shown to be im-
plementable, albeit in the small, restricted word-pronunciation task in the
morpho-phonological domain. Assuming a complex hierarchy of abstraction
levels for the task can be intuitive, insightful, and plausible, but may be a con-
struct which enforces too much structure on the task that can be adequately
learned and performed on the basis of very local knowledge (viz. a context of
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seven letters) of one-level associations between (parts of) written words and
their phonemic transcriptions. As far as abstraction levels are necessary for
word pronunciation, they are largely implicit in the word-pronunciation data
itself, and can as such be traced by learning algorithms to an adequate de-
gree. Thus, there appears to be no need for an overly expert-theoretic bias in
the definition of the word-pronunciation learning task when algorithms from
supervised ML are the learners, since the dreaded variance in the absence of
a bias can be avoided when a set of examples of the size of a dictionary is
available. One should be careful extrapolating this apparent success to other
language tasks, however. The word-pronunciation task is to map strings of
letters to strings of phonemes and stress assignments, which is a relatively
close mapping – the number of feature values and classes is small, and the
many-to-many relations between them are calculable. When feature values
represent words (of which there may be several hundreds of thousands), or
when classes represent semantic representations, modularity would without
a doubt be a prerequisite to reduce the complexity and the computational
load of the overall learning task.

Lazy inductive language learning

From a machine-learning perspective we have shown that the investigated
tasks do not allow for too much abstraction by forgetting when the goal is high
generalisation accuracy. Applications of the lazy learning algorithms IB1 and
IB1-IG to the word pronunciation task and subtasks consistently lead to the
best accuracies; the more an algorithm attempts to abstract from the data by
compressing it, the more generalisation accuracy is harmed (cf. Daelemans,
1996a). Moreover, we have found indications for two intrinsic characteristics
of the data favouring information-gain-weighted lazy learning. First, the data
contains many small disjuncts, i.e., clusters (families) of instances estimated
to contain between about three to a hundred members sharing the same class.
For learning small disjuncts, lazy learning is the preferred learning approach
since eager learning tends to throw away essential information on how to
reach the small disjuncts while lazy learning retains all instances in memory.
Second, the feature values of word-pronunciation instances have varying
relevances (the middle letter of a window being by far the most relevant for
classification). By using this intrinsic characteristic of the data, IB1-IG skews
the instance space in such a way that instances belonging to the same class are
on average more similar to each other as compared to the similarity function
used in IB1.
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In general, our study suggests that abstraction by forgetting, pruning, and
other implementations of the minimal description length principle (Rissanen,
1983) underlying many acclaimed machine-learning algorithms should be ap-
plied carefully when dealing with language tasks. The investigated task, word
pronunciation, can only be mastered properly when the learning algorithm
has the liberty and, metaphorically, the patience to learn about the hundred
thousand-odd words, the few ten thousands of different morphemes that
make up the words, and their different, sometimes noisy or ambiguous pro-
nunciations. After all, a writing system of a language such as English is, by its
morphemes and the way they can recombine, a method of describing practi-
cally anything in a compressed way – and compression halts somewhere near
the level of morphemes.

Inductive language learning, a language-independent and data-oriented
approach to natural language, opens the door to many exciting studies of
different tasks, differently-sized corpora, in different languages – learning
English word pronunciation is but one language task, and most likely not the
most complex to be found. We hope that our demonstration that analogy
between two levels of language can be exploited adequately by inductive
learning is a step ahead in this still largely unknown territory.
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Appendix A

Orthographic and phonemic
alphabets

In this appendix we give the letter alphabet and the phoneme alphabet used
in our experiments on English morpho-phonological (sub) tasks (Chapters 3,
4, 5, and 6). The letter alphabet is adapted from CELEX (Van der Wouden,
1990; Burnage, 1990) and contains 42 characters. These include the 26 letters
of the roman alphabet, 12 letters with diacritics (mostly occurring in loan
words), three non-letter characters which are treated by CELEX as letters, viz.
the dot, the apostrophe, and the hyphen, and one character ( ) denoting the
space before and after a word. Table A.1 lists all 42 letters.

The phonemic alphabet is an adaptation of the DISC phoneme alphabet
as proposed and used in CELEX (Burnage, 1990). It contains 62 phonemes, of

type # list
roman alphabet 26 a b c d e f g h i j k l m

n o p q r s t u v w x y z
letters with diacritics 12 à â ä ç è é ê ı̈ ñ ô ö ü
non-letter characters 3 . ’ -
space 1

Table A.1: The contents of the letter alphabet used in the experiments with
English morpho-phonology.
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which 54 are directly extracted from CELEX, and eight are added to the pho-
neme alphabet representing eight combinations of two phonemes realised in
spelling as one letter (e.g., the x in taxi is pronounced /ks/; in our phoneme
alphabet, /ks/ is encoded as X). Table A.2 displays all 62 phonemes in their
IPA (International Phonetic Alphabet, IPA, 1993) notation, their DISC notation
(including the eight combined phonemes) used in our experiments, and for
each phoneme one example word containing the phoneme in its pronuncia-
tion (indicated by underlined letters). The example words are adapted from
the CELEX manual (Burnage, 1990).

Each phoneme is characterised uniquely by a combination of articulatory
features present during articulation. We identify 25 articulatory features. The
employed feature set is adapted from that of Sejnowski and Rosenberg (1987)
and is also used by Dietterich et al. (1995). Table A.3 lists the names of the
25 articulatory features, and the numbers assigned to the features as used
in the subsequent Tables. Tables A.4 and A.5 display for each phoneme its
articulatory-feature vector. Consonant vowels are listed in Table A.4; vowel
phonemes are listed in Table A.5. When an articulatory feature is marked with
an asterisk (*) in a phoneme’s row, it signifies that this articulatory feature is
present during the pronunciation of that phoneme.
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IPA DISC example IPA DISC example IPA DISC example
p p pat h h had � � $ born
b b bad w w why u � u soon
t t tack

�
J cheap � � 3 burn

d d dad � jeep eı 1 bay
k k cad � � C bacon aı 2 buy� g game �m F idealism � ı 4 boy

� N bang � n H burden ��� 5 no
m m mad � l P dangle a � 6 browse
n n now � R father ı � 7 peer
l l lad ks X taxi �

� 8 pair
r r rat k

� � sexual � � 9 poor
f f fat � z G auxiliary æ̃ c timbre
v v vows ı I pit ˜� � q détente
� D that � E pet æ̃ � 0 lingerie
� T thin æ � pat ˜� � ˜ bouillon
s s sock � V putt aı � [ admirer
z z zap � Q pot j � � compute�

S sheep � U put j � ] fabulous
� Z measure � @ another j � � � cure
j j yank i � i bean j � � � annual� x loch �	� # barn

Table A.2: The contents of the phoneme alphabet used in the experiments
with English morpho-phonology. For each phoneme, its IPA and
DISC notation is given, as well as an example word illustrating its
pronunciation.
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number name of articulatory feature
1 low
2 medium
3 high
4 tensed
5 back1
6 back2
7 central1
8 central2
9 front1
10 front2
11 voiced
12 labial
13 stop
14 velar
15 alveolar
16 unvoiced
17 fricative
18 glottal
19 glide
20 dental
21 liquid
22 nasal
23 palatal
24 affricative
25 elide

Table A.3: Names of the 25 articulatory features used for encoding the
phonemes in the ART/S experiments (Section 5.3).
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articulatory feature

phoneme
l
o
w

m
e
d
i
u
m

h
i
g
h

t
e
n
s
e
d

b
a
c
k
1

b
a
c
k
2

c
e
n
t
r
a
l
1

c
e
n
t
r
a
l
2

f
r
o
n
t
1

f
r
o
n
t
2

v
o
i
c
e
d

l
a
b
i
a
l

s
t
o
p

v
e
l
a
r

a
l
v
e
o
l
a
r

u
n
v
o
i
c
e
d

f
r
i
c
a
t
i
v
e

g
l
o
t
t
a
l

g
l
i
d
e

d
e
n
t
a
l

l
i
q
u
i
d

n
a
s
a
l

p
a
l
a
t
a
l

a
f
f
r
i
c
a
t.

e
l
i
d
e

p � � �
b � � �
t � � �
k � � �
h � � �
w � � ��

� � �
d � � �

� � � �� � � ��m � � �
� � � �� n � � �
m � � �
� l � � �
n � � �

� � � � � �
l � � �

ks � � � �
r � � �

k
�

� � � � �
f � � �� z � � � �
v � � �
� � � �
� � � �
s � � �
z � � ��

� � �
� � � �
j � � �� � �

Table A.4: Articulatory-feature vectors for all consonant phonemes. Each
phoneme is characterised by a vector of 25 articulatory features.
A star ( � ) in a cell denotes the presence of the articulatory feature
in the respective column, in the pronunciation of the phoneme in
the respective row.
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articulatory feature

phoneme
l
o
w

m
e
d
i
u
m

h
i
g
h

t
e
n
s
e
d

b
a
c
k
1

b
a
c
k
2

c
e
n
t
r
a
l
1

c
e
n
t
r
a
l
2

f
r
o
n
t
1

f
r
o
n
t
2

v
o
i
c
e
d

l
a
b
i
a
l

s
t
o
p

v
e
l
a
r

a
l
v
e
o
l
a
r

u
n
v
o
i
c
e
d

f
r
i
c
a
t
i
v
e

g
l
o
t
t
a
l

g
l
i
d
e

d
e
n
t
a
l

l
i
q
u
i
d

n
a
s
a
l

p
a
l
a
t
a
l

a
f
f
r
i
c
a
t
i
v
e

e
l
i
d
e

� � � �
u � � � �� � � � �
eı � � �
aı � � � �� ı � � � �

��� � � �
a � � � � � �
ı � � � � ��

� � � � �� � � � � �
æ̃ � � �
ı � �
˜�	� � � ��

� � �
æ̃ � � � �
æ � �
˜� � � � � �

� � �
aı � � � � � �� � � �
j � � � � � � � �
� � �
j � � � � � �

� � �
j � � � � � � �
i � � � �

j � � � � � � � �
�	� � � �

Table A.5: Articulatory-feature vectors for all vowel phonemes. Each pho-
neme is characterised by a vector of 25 articulatory features. A
star ( � ) in a cell denotes the presence of the articulatory feature
in the respective column, in the pronunciation of the phoneme in
the respective row.



Appendix B

BP in MFN

The description of BP in MFNs given here is intended as a technical backup to
the description given in Subsection 2.1.2. It is divided into two parts. First, we
describe the feedforward activation of units in an MFN. Second, we describe
how the error of units and the weight change of connections are computed
when BP is employed. This description is based on Hertz, Krogh, and Palmer
(1991).

For the sake of simplicity, we consider an MFN with an input layer (units
indexed by

�
), one hidden layer (units indexed by

�
), and an output layer

(units indexed by � ).
The output of the network is defined as

��� � � 

�
� 
 � (B.1)

where ��� is the � -th output activation and
� 
 
 is a sigmoidal function defined

as � 
 � 
 � �
� �����	��

� � (B.2)

The net input

�
� of the � -th output unit is�

� � �
�
� � � � � ��� � � (B.3)

where
� � � is the hidden-to-ouput weight from the

�
-th hidden to the � -th

output unit,
� � is the output of the

�
-th hidden unit and � � is the bias weight of

the � -th unit.
The hidden output is defined as

� � � � 

�
� 
 � � 
 � 	�� �

	 � 	 ��� � 
 � (B.4)
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Here,
� �
	

denotes the weight of the input-to-hidden connection from the
�
-th

input to the
�
-th hidden unit,

� 	
is the

�
-th input value, and � � is the bias weight

of the
�
-th unit.

Taken together, the above definitions lead to

� � � �
�� �
�
� � � ��� � 	 � � 	 � 	�����

� (B.5)

Where we have omitted the bias weights which are treated as regular weights
by assuming that they are connected to an additional unit with constant
output � � � .

The error function 	 specifies the classification error of the MFN on all
pattern � , i.e., 	 �

��
 	 
 � �
�
� 

� 
 �


� � �



� 
 �

�
(B.6)

which can now be written as (introducing the pattern index � ):

	 � �
�
�� � 
 � �

�
�� �
�
� � � ��� � 	 � � 	 � 
 	 �������

� (B.7)

The weight-changing rule should perform a gradient descent on 	 . For the
hidden-to-output weights this leads to

� � � � � ����� 	� � � � (B.8)

� � ��
 
 � 
 � � �


� 
 � � 


� 

� 
 �


� (B.9)

� � � 
 �


� �


� � (B.10)

where � is the learning rate and �


� is the output error signal defined as

�


� � � � 


� 

� 
 
 �



� � �



� 
 � (B.11)

For the input-to-hidden weights, the error signals are not directly available
and have to be derived from the output error signals �



� :

� � �
	
� ��� � 	� � � 	 (B.12)
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� ����� 	� � 
 � � �


�� � � 	 (B.13)

� � � 
 � 
 � 
 � � �


� 
 � � 


� 

� 
 � � � � � 


� 

� 
 �

 	

(B.14)

� � � 
 � � 
 � � � � � � 
 � 
 � 
 � 
 	 (B.15)

� � � 
 �


� �

 	 �

(B.16)

where �


� is the hidden error signal defined as

�


� � � � 


� 

� 
 � � � � � �



�
� (B.17)
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Appendix C

Information gain

Information gain, a feature-weighting function, is used in IB1-IG (Subsec-
tion 2.1.3) and IGTREE (Subsection 2.1.4), to provide a real-valued expression
of the relative importance of feature-values, i.e., letter positions, given a cer-
tain morpho-phonological task.

The idea behind computing the information gain of features is to interpret
the training set as an information source capable of generating a number
of messages (i.e., classifications) with a certain probability. The information
entropy � of such an information source can be compared in turn for each of
the features characterising the instances (let � equal the number of features),
to the average information entropy of the information source when the value
of those features are known.

Data-base information entropy � 
�� 
 is equal to the number of bits of in-
formation needed to know the classification given an instance. It is computed
by equation C.1, where �

	
(the probability of classification

�
) is estimated by

its relative frequency in the training set.

� 
�� 
 � �
� 	
�

	 �
� �

� �

	
(C.1)

To determine the information gain of each of the � features
�
� � � �

� � , we
compute the average information entropy for each feature and subtract it from
the information entropy of the data base. To compute the average information
entropy for a feature

�
	
, given in equation C.2, we take the average information

entropy of the data base restricted to each possible value for the feature. The
expression ��� ��� 
����
	 refers to those patterns in the data base that have value
� � for feature

�
	
,
�

is the number of possible values of
�
	
, and � is the set of
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possible values for feature
�
	
. Finally,

�
�

�
is the number of patterns in the

(sub) data base.

� 
�� � � � 	 
 � �
��� ���

� 
�� � � � 
�� � 	 

�
��� � � 
�� � 	 �

�
�

� (C.2)

Information gain of feature
�
	

is then obtained by equation C.3.

� 
 �
	

 � � 
�� 
 � � 
�� � ��� 	 
 (C.3)



Appendix D

Information-gain values

This appendix displays the information-gain values computed for the word-
pronunciation (sub)tasks investigated in Chapters 3 and 5. The information
gain of each of the seven input features is computed on the complete data
base of the (sub)task. This information is presented in the form of bar graphs.

D.1 Isolated word-pronunciaton subtasks

This section displays the information-gain contours for the word-phonem-
isation subtasks investigated in isolation in Chapter 3. The maximum value
of the y-axis, viz. information gain, is held constant at � � � � for comparison,
except for the grapheme-phoneme conversion subtask. Feature positions are
denoted by F with an offset determining the position from the focus letter.
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D.2 Parallelised word-phonemisation

This section displays the information-gain contours for the word-pronunciation
task and stress-assignment subtask investigated in Chapter 5.
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D.3 Voting

This section displays the information-gain values of the classification outputs
of IGTREE, IB1, and IB1-IG, trained on the GS task, with the actual GS classifica-
tions as output (cf. Section 7.2).
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Appendix E

IGTREE

We describe how IGTREE (Daelemans et al., 1997a) performs the induction of
decision trees in Section E.1, and describe how classifications are retrieved
from induced decision trees in Section E.2.

E.1 Decision-tree induction by IGTREE

Given a training set of instances with � features, and given the information
gain values of all features computed over the full corpus, a decision tree is
built in which instances are stored in a compressed fashion (i.e., as partially
overlapping paths of variable length):

Procedure BUILD-IG-TREE:

Input:

� A training set
�

of instances with their associated classifications (start value: a
full instance base),

� an information-gain-ordered list of features ��� � � ����� (start value: � � � � ����� ).

Output: A subtree.

1. If
�

is unambiguous (all instances in
�

map to the same class 	 ), or 
 � ����
 	�� ,
create a leaf node with unique class label 	 .

2. Otherwise, until 
���� (the number of features)
� Select the first feature � � in � � � ����� � , and construct a new node � for feature
� � , and as default class 	 (the class occurring most frequently in

�
).

� Partition
�

into subsets
� � � � � ��� according to the values � � � � � � � which occur

for � � in
�

(instances with the same values for this feature in the same subset).
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� For each �����
	�
 � � � 
���� :
if not all instances in

�
	
map to class 	 , BUILD-IG-TREE � �
	 
 ����� � � � � ��� � , con-

nect the root of this subtree to � and label the arc with letter value � 	 .

E.2 Decision-tree classification retrieval in IGTREE

After tree construction, the classification of an instance can be looked up in
the tree. The instance is matched against paths in the decision tree, until a leaf
node is found producing a unique class label or, if no unambiguous mapping
can be found, producing the most probable class at the point of tree search
failure:

Procedure SEARCH-IG-TREE:

Input:
� The root node � of an subtree (start value: top node of a complete IGTree),
� an unlabelled instance 
 with information-gain-ordered feature values � � � � � � �

(start value: � � � � � � � ).

Output: A class label.

1. If � is a leaf node, produce default class 	 associated with this node as output.

2. Otherwise, if no arc originates from � labelled with letter value � � , then produce
default class 	 associated with � as output.

3. Otherwise,
� let � be the next node reached via the arc originating from � with as label

letter � � .� SEARCH-IG-TREE ��� 
 � ��� � � � � � � �
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Summary

Learning to pronounce written words means learning the intricate relations
between the speech sounds of a language and its spelling. For languages
with alphabetic writing systems, such as English, the relations can be cap-
tured to a large extent by induction (reasoning by analogy). After all, a per-
vasive phenomenon in alphabetic writing systems is that similarly-spelled
words have similar pronunciations. However, mainstream (Chomskyan) lin-
guistic theories have put forward the claim that pronouncing known and
unknown words cannot be performed without the assumption of several
levels of abstraction between spelling and pronunciation. Since general-
purpose inductive-learning methods cannot discover such abstraction lev-
els autonomously, linguistic theorists claim that inductive-learning methods
cannot learn to pronounce words as well as generalise this knowledge to
previously unseen words.

The present study challenges this claim. The study is embedded in both
(i) the tradition of structural linguistics, building quite directly on ideas ex-
pressed a century ago by De Saussure, and (ii) the recent developments in
machine learning (a subdomain of artificial intelligence). De Saussure claimed
that language processing can be performed by assuming only two basic op-
erations: segmentation and classification. In the machine-learning domain, it
is claimed, and occasionally demonstrated, that inductive learning methods
can learn complex real-world segmentation and classification tasks, attain-
ing a high level of generalisation accuracy when given a sufficient amount
of examples. The apparent and intriguing contrast between the claims from
mainstream (Chomskyan) linguistics on the one hand, and those of structural
linguistics and machine learning on the other hand, prompted us to perform
an empirical study of the inductive learning of word pronunciation. The re-
sults of this empirical study allow us to claim that inductive-learning algorithms
can learn to pronounce written words with adequate generalisation accuracy, even
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when the task definition (and thus the system architecture) does not reflect explicitly
any of the levels of abstraction assumed necessary by linguistic theories.

Chapter 1 introduces the historical background mentioned above on argu-
ments and counterarguments concerning the feasibility of inductive language
learning. On the basis of claims from structural linguistics and machine learn-
ing, the problem statement is formulated.

Chapter 2 provides the reader with an overview of relevant background
knowledge. It describes three groups of inductive-learning algorithms: con-
nectionist learning, instance-based learning, and decision-tree learning. They
are suited, in principle, for learning word pronunciation. The chapter reviews
mainstream linguistic views on the domains of morphology and phonology,
highlighting levels of abstraction assumed present in word pronunciation.
It then introduces the resource of word-pronunciation examples used in our
study, i.e., the CELEX English lexical data base, and describes the general
experimental methodology employed throughout the study.

Chapter 3 presents the application of the selected learning algorithms to
five subtasks of the word-phonemisation task: (i) morphological segmen-
tation, (ii) graphemic parsing, (iii) grapheme-phoneme conversion, (iv) syl-
labification, and (v) stress assignment. They represent five linguistically-
motivated abstraction levels of word pronunciation. The results obtained
with the five algorithms trained on each of the five subtasks in isolation indi-
cate that the learning algorithms attain reasonable to excellent generalisation
accuracy. Moreover, the results indicate that the less a learning algorithm
abstracts from the learning material by data compression, the better its gen-
eralisation accuracy is on any of the subtasks.

In Chapter 4, modular word-pronunciation systems are constructed,
learned, and tested. The architecture of the modular systems is inspired
by two existing text-to-speech systems. Both modular systems perform the
five subtasks investigated in Chapter 3. Each subtask is assigned to a single
module; the five modules perform their subtasks in sequence. Generalisation-
accuracy results indicate that cascading errors passed on between the modules
seriously impede the overall accuracy of the systems. To prevent some of the
errors we abandon the assumption that a five-modular decomposition is nec-
essary, and investigate two three-modular systems, in which two pairs of
subtasks from the five-modular systems are integrated into single tasks. The
systems distinguish between (i) morphological segmentation, (ii) grapheme-
phoneme conversion, and (iii) stress assignment. Their generalisation accu-
racy is significantly better than that of their five-modular counterparts.



In Chapter 5 the concept of sequential modularisation is abandoned and
the alternative of parallel modularisation is tested in three new modular
systems. In the first system, word pronunciation is performed by a single
module converting spelling to phonemic transcriptions with stress markers
in a single classification pass. The second system performs two tasks in
parallel, viz. the conversion of letters to phonemes and the conversion of
letters to stress markers. In the third system, the letter-phoneme conversion
task is split further into 25 partial subtasks: each of these subtasks represents
the detection of one articulatory feature of the phoneme to be classified.
The results indicate that the single-module and two-module parallel systems
perform better, and the articulatory-feature-detection system performs worse
than the best three-module sequential system described in Chapter 4, when
trained with the same algorithms.

Chapter 6 deals with three linguistically-uninformed gating systems for
word pronunciation. In these systems, the word-pronunciation task is split
in two parallel-processed partial word-pronunciation tasks. Rather than de-
composing the task on the output level, the task is decomposed by applying
a gating criterion at the input level, viz. on the spelling of (parts of) words.
Three gating systems are tested: randomised gating, typicality-based gat-
ing, and occurrence-based gating. Randomised gating is demonstrated to be
learned with lower accuracy than the word-pronunciation task as a whole;
the typicality-based and occurrence-based systems are found to perform as
accurate as the undecomposed system. Thus, gating does not lead to improve-
ments in generalisation accuracy, but is capable of automatically decomposing
the word-pronunciation data in essentially different subsets.

A summary of results reported in Chapters 3 to 6 is given in Chapter 7. Ad-
ditional attention is paid to measures of computational efficiency of the learn-
ing algorithms tested. Instance-based learning attains the best (and adequate)
generalisation accuracy on all (sub)tasks; the systems induced by decision-
tree learning provide the best trade-off between generalisation accuracy and
computational efficiency. Furthermore, analyses on the word-pronunciation
data are performed searching for the cause of the success of instance-based
learning: the analyses indicate that instances of word pronunciation tend to
come in families containing small amounts of identically-classified members.
Instance-based learning performs favourably with data containing this type
of instance families (small disjuncts). Subsequently, the chapter describes two
modular systems that combine apparently successful attributes of different
systems investigated throughout the study, showing that better systems can



be built on the basis of both linguistic and empirical findings. The chapter
then summarises related research, gives an overview of the limitations of the
present approach, and indicates topics of future research.

In Chapter 8 the conclusion is drawn that inductive-learning methods,
specifically instance-based learning algorithms, can learn the task of word
phonemisation, attaining an adequately high level of generalisation accuracy.
Linguistic bias in the task definition (and in the system architecture) can be
reduced to an absolute minimum, thus be left implicit, while the system still
attains accurate generalisation.



Samenvatting

Het leren van de uitspraak van woorden is het ontdekken van de ingewikkelde
relaties tussen de klanken van een taal en haar spelling. In het geval van talen
met een alfabetisch schrijfsysteem, zoals het Engels en het Nederlands, kun-
nen deze relaties voor een groot gedeelte worden gevonden door middel van
inductie (redeneren door analogie). Voor alfabetische schrijfsystemen geldt
immers dat woorden die in hun spelling op elkaar lijken, ook in hun uitspraak
op elkaar lijken. De belangrijkste taalkundige theorieën (die voortbouwen op
ideeën van Chomsky) beweren echter dat het uitspreken van bekende en on-
bekende woorden niet mogelijk is zonder aan te nemen dat er verschillende
abstractieniveaus bestaan tussen spelling en uitspraak. Taaltheoretici stellen
dat inductief-lerende methoden niet in staat zijn om woorduitspraak te leren
en om de geleerde kennis toe te passen op nieuwe, onbekende woorden, om-
dat inductief-lerende methoden niet in staat zijn om uit zichzelf dergelijke
abstractieniveaus te ontdekken.

Dit proefschrift zet een vraagteken bij deze stelling. De studie is ingebed
in (i) de traditie van de structurele taalkunde, die vrij rechtstreeks voort-
bouwt op de ideeën van De Saussure van een eeuw geleden, en in recente
ontwikkelingen binnen (ii) automatisch leren (machine learning), een deelge-
bied van de kunstmatige intelligentie. De Saussure stelde dat het verwerken
van taal mogelijk is onder de aanname van slechts twee operaties: segmen-
tatie en classificatie. Binnen het automatisch leren geldt de opvatting dat
inductieve leermethoden in staat zijn om complexe, reële segmentatie- en
classificatietaken te leren, mits er voldoende leervoorbeelden voorhanden
zijn; er bestaan verschillende voorbeelden van toepassingen die dit aanto-
nen. De in het oog lopende en intrigerende tegenstelling tussen de stellingen
van de Chomskyaanse taalkunde aan de ene kant, en die van de structurele
taalkunde en het automatisch leren aan de andere kant, bracht ons tot het
uitvoeren van een empirische studie van het inductief leren van woorduit-
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spraak. De resultaten van deze empirische studie staan ons toe om te stellen
dat inductieve leeralgoritmen in staat zijn om de uitspraak van woorden te leren met
een bevredigend generaliseringsvermogen, zelfs wanneer de taakdefinitie (en ook de
systeemarchitectuur) geen enkele van de abstractieniveaus reflecteert die expliciet als
noodzakelijk worden verondersteld door taalkundige theorieën.

Hoofdstuk 1 introduceert de bovengenoemde historische achtergrond van
argumenten en tegenargumenten met betrekking tot de haalbaarheid van
inductief leren van natuurlijke taal. Op basis van claims van de structurele
taalkunde en het automatisch leren wordt vervolgens de probleemstelling
geformuleerd.

In Hoofdstuk 2 wordt een overzicht gegeven van relevante achtergrond-
kennis. Er worden drie groepen inductieve leeralgoritmen beschreven die (in
principe) geschikt zijn om woorduitspraak te leren: connectionistisch leren,
instantie-gebaseerd leren, en het leren van beslissingsbomen. Het hoofd-
stuk biedt een overzicht van heersende taalkundige ideeën over morfologie
en fonologie, en legt de nadruk op de abstractieniveaus die aanwezig wor-
den verondersteld bij het uitspreken van woorden. Vervolgens wordt de
gegevensbron beschreven waaruit de in de studie gebruikte voorbeelden van
de uitspraak van woorden zijn gehaald: de Engelse lexicale data base van
CELEX. Tenslotte wordt de methodologie beschreven die door de hele studie
heen gevolgd is.

Hoofdstuk 3 beschrijft de toepassing van de geselecteerde leeralgorit-
men op vijf deeltaken van de uitspraaktaak. De deeltaken representeren
vijf taalkundig gemotiveerde abstractieniveaus binnen woorduitspraak: (i)
morfologische segmentatie, (ii) grafemische ontleding, (iii) grafeem-foneem-
omzetting, (iv) lettergreepsplitsing, en (v) klemtoontoekenning. De resultaten
behaald met het toepassen van de vijf algoritmen op ieder van de deeltaken
laten zien dat de algoritmen een redelijk tot excellent generaliseringsvermo-
gen kunnen halen. Daarnaast laten de resultaten zien dat hoe minder een
leeralgoritme abstraheert over het leermateriaal door gegevenscompressie,
des te beter zijn generaliseringsvermogen is, op iedere deeltaak.

In Hoofdstuk 4 worden modulaire woorduitspraaksystemen gecon-
strueerd, geleerd en getest. De architectuur van de modulaire systemen
is geı̈nspireerd op twee bestaande tekst-naar-spraak-systemen. Beide mo-
dulaire systemen voeren de uitspraaktaak uit in sequentieel verwerkende
modules. De behaalde generaliseringsscores geven aan dat opeenstapelin-
gen van fouten, doorgegeven van module naar module, de prestatie van de
systemen ernstig hinderen. Om een gedeelte van deze ongewenste fouten



te ondervangen laten we het idee van een systeem met vijf modules varen
en onderzoeken we twee systemen met drie modules. In deze drie-module
systemen worden twee paren van deeltaken van de vijf-module systemen
geı̈ntegreerd tot enkele deeltaken. De precisie van deze systemen, die on-
derscheid maken tussen (i) morfologische segmentatie, (ii) grafeem-foneem-
omzetting en (iii) klemtoontoekenning, is significant beter dan die van hun
tegenhangers met vijf modules.

In Hoofdstuk 5 wordt het idee van sequentiële modulariteit vervangen
door dat van parallelle modulariteit. Drie parallel-modulaire systemen wor-
den getest. In het eerste systeem word woorduitspraak uitgevoerd door een
enkele module, die letters omzet naar fonemen met klemtoonmarkeringen
in een enkele omzettingsslag. Het tweede systeem voert twee deeltaken pa-
rallel uit, namelijk de omzetting van letters naar fonemen, en de omzetting
van letters naar klemtoonmarkeringen. In het derde systeem wordt de letter-
foneem-omzettingsdeeltaak verder uitgebreid tot 25 partiële deeltaken: ieder
van deze partiële deeltaken representeert de herkenning van één articula-
torisch kenmerk van het te classificeren foneem. De resultaten wijzen uit
dat het systeem met de enkele module en het systeem met de twee modules
beter presteren, en dat het articulatorisch-kenmerk-detectiesysteen slechter
presteert dan het best presterende drie-modulesysteem beschreven in Hoofd-
stuk 4 dat getraind is met hetzelfde leeralgoritme.

Hoofdstuk 6 introduceert drie ‘poortwachtersystemen’ (gating systems)
voor woorduitspraak waarin geen taalkundige kennis verwerkt is. De
woorduitspraaktaak wordt in deze systemen opgesplitst in twee parallel-
verwerkte partiële woorduitspraaktaken. In plaats van de taak op te splitsen
op het uitvoerniveau wordt de taak opgesplitst op basis van het toepassen van
een poortwachtercriterium op het invoerniveau: de spelling van (delen van)
woorden. Drie poortwachtersystemen worden getest, te weten die met een
toevalsgebaseerde poortwachter, een typicaliteits-gebaseerde poortwachter,
en een voorkomen-gebaseerde poortwachter. Uit de resultaten blijkt dat in
het toevalsgebaseerde poortwachtersysteem de woorduitspraaktaak slechter
wordt geleerd dan de ongesplitste taak in zijn geheel. In de typicaliteits-
gebaseerde en voorkomen-gebaseerde systemen wordt de taak met dezelfde
precisie geleerd als de ongesplitste uitspraaktaak. Het aanbrengen van een
poortwachter leidt niet tot verbetering van de prestatie, maar het is mogelijk
om met een poortwachtersysteem de woorduitspraakgegevens automatisch
op te delen in essentieel verschillende deelverzamelingen van gegevens.

Een samenvatting van de resultaten uit de Hoofdstukken 3 tot en met 6



wordt gegeven in Hoofdstuk 7. Speciale aandacht wordt besteed aan de
mate van computationele efficiëntie van de gebruikte leeralgoritmen. Met
instantie-gebaseerd leren worden de beste resultaten geboekt; de systemen
die door het leren van beslissingsbomen worden gegenereerd bieden het beste
evenwicht tussen generaliseringsvermogen en computationele efficiëntie. Hi-
erop volgend worden analyses op de woorduitspraak-gegevens uitgevoerd
om de oorzaken te zoeken voor het succes van instantie-gebaseerd leren: de
analyses wijzen uit dat instanties van woorduitspraak in families voorkomen,
die bestaan uit kleine aantallen leden met dezelfde klasse. Instantie-gebaseerd
leren is in staat om goed te presteren op verzamelingen gegevens die dit soort
kleine families (small disjuncts) bevatten. Vervolgens beschrijft het hoofdstuk
een modulair woorduitspraak-systeem dat een aantal empirische bevindin-
gen aangaande verschillende in het proefschrift onderzochte systemen com-
bineert. Een analyse van het systeem toont aan dat het mogelijk is om betere
woorduitspraaksystemen te bouwen door taalkundige en empirische ken-
nis te combineren. Tenslotte biedt het hoofdstuk een overzicht van verwant
onderzoek, en geeft een aantal indicaties voor verbetering van de huidige
aanpak en onderwerpen van toekomstig onderzoek.

In Hoofdstuk 8 wordt de conclusie getrokken dat inductieve leermetho-
den, in het bijzonder instantie-gebaseerde leermethoden, in staat zijn om
woorduitspraak te leren en daarbij een adequaat generaliseringsvermogen
te bereiken. Taalkundige voorkennis in de taakdefinitie (en in de systeem-
architectuur) kan beperkt worden tot een absoluut minimum, kan met andere
woorden impliciet gelaten worden, zonder dat het generaliseringsvermogen
daar onder lijdt.
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